
Recommender Systems: Implementation of
Collaborative Filtering Algorithms and Benchmark

Hugo Verı́ssimo
Foundations of Machine Learning 24/25

University of Aveiro
Aveiro, Portugal

hugoverissimo@ua.pt

João Cardoso
Foundations of Machine Learning 24/25

University of Aveiro
Aveiro, Portugal

joaopcardoso@ua.pt

Abstract—Recommender systems have been used reliably since
their early inception the 90’s, and the field exploded upon the
introduction of the Netflix prize, which aimed at developing the
best and most efficient recommender system for their movie
platform. In this work three recommender systems based on
collaborative filtering are developed and presented, based on one
of the MovieLens datasets. The models are compared considering
their error metrics, and the capacity to rank items accurately.
The models are compared with the literature, focusing on the
framework used for comparison.

Keywords: MovieLens, GroupLens, Recommender Sys-
tem, Collaborative Filtering, Linear Regression, FunkSVD

I. INTRODUCTION

Since the early 90’s that the production rate of multimedia
content has increased dramatically (pun intended). Initially,
users relied mostly on video store owners, film critics on
newspapers, friends. With increasing volumes of content,
recommender systems have appeared as data-driven methods
to reliably and quickly recommend movies based on the users’
own appreciations.

Recommender systems are information tools that provide
users with recommended items (ideally) based on their list
of preferences [1], [2]. These can be divided in different
types, depending on the algorithm and approach to the data.
Three categories can be considered: non-personalized, content-
based, and collaborative filtering algorithms. Regardless of the
algorithm of choice, these face crucial challenges: cold start
problem (where it is difficult to tailor recommendations to
a user without known preferences, or recommend an item
with no reviews); data sparsity (given that most users re-
view few items in the universe of possible items, leaving
most of the user/item matrix empty); and scalability (as data
grows exponentially, processing becomes evermore expensive
and troublesome). These systems have been widely used in
many different areas (online shopping, music, books, movie
recommendation), and significant investment has gone into
developing evermore personalized algorithms. A notable case
for this was the Netflix prize competition in 2009, a moment
where the research in the field skyrocketed. As a result, many
algorithms fitted and tested on different conditions and datasets
have been developed. With this came the need to develop better
frameworks for comparison, considering not only the metrics,

but data preprocessing, preparation, and routine, in order to
ensure reproducibility across models and authors [3].

For that reason, the developed recommender systems is
based on one of the most widely used movie databases,
MovieLens dataset, for education and development [4]. The
choice of this dataset allowed for a based comparison with
algorithms from the literature, and facilitate the analysis and
interpretation of the results here presented.

II. STATE OF THE ART

The field of recommender systems is wide and covers many
different algorithms and techniques. In this paper we focus on
collaborative filtering using matrix factorization, as it is the
main focus of the work here developed.

The Netflix prize is often cited as one of the main drivers
for research in collaborative filtering recommender systems
[5]. One of the initial awarded proposals was that by Brandyn
Webb, known by his alias ”Simon Funk”. Despite the name
of the algorithm (FunkSVD), Singular Value Decomposition
is not used, it uses instead gradient descent to find the
latent feature values used to predict the ratings matrix. The
algorithm uses only the available ratings, representing a great
advantage against SVD methods that struggle with mostly
sparse matrices.

Unlike SVD, the original matrix is decomposed between
two matrices (for users and movies), where the diagonal matrix
typically found in SVD is merged into one of the two. Since
the original matrix is so sparse, the u matrix and the v matrices
are initiated randomly, and estimated by minimizing the error
relative to the original matrix via gradient descent.

rij = ui · vj (1)

uif (new) = uif (old) + 2α(rij − r̃ij)vjf (2)
vjf (new) = vjf (old) + 2α(rij − r̃ij)uif (3)

There is a caveat however, given that the model requires
fine tuning of numerous parameters (number of latent features,
learning rate, training iterations, regularization parameter),
which can lead to overfitting [6].

1

In the work by Zhou et al., alternating least squares with
weighted λ regularization (ALS-WR).

f(U,M) =
∑

{i,j}|ri,j∈I

(
ri,j − uT

i mj

)2
+ λ

∑
i

nui
∥ui∥2 +

∑
j

nmj
∥mj∥2

 (4)

The algorithm expresses the rating matrix as the product of
two smaller matrices U (user matrix) and M (item matrix).
Thanks to its simplicity, the algorithm tackles both scalability
and sparseness of user profiles, with the added bonus of not
overfitting [7].

A third model by Gopalan et al. uses a probabilistic ap-
proach by assuming that the observed rating is drawn from
a Poisson distribution, which is parameterized by the inner
product of a user weights vector and an item weights vector.

yui ∼ Poisson(θTu βi) (5)

Where:
User weights: θu = [θu1, . . . , θuk]
Item weights: βi = [βi1, . . . , βik]
θuk ∼ Gamma(a, b)
βik ∼ Gamma(c, d)

With this, the model is able to compute the probability for
each unconsumed item that the user might enjoy [8].

III. METHODOLOGY

A. Data description

The dataset MovieLens for Education and Research (small)
was used to test the different models. It contains 100.836
ratings, from 0.5 to 5, for 9724 movies (and its genres) and
610 users, where each user rated at least 20 movies [9].

B. Data splitting & models implemented

The dataset was split between train and test (80/20), which
resulted in 80668 ratings for the training and 20168 for the
testing dataset. Three models were developed, as described in
the Table I.

TABLE I: Implemented models description.

Model - features Description

Model 01 - Users and Movies Collaborative Filtering,
Linear Regression (CF-LR)

Model 02 - Users and Movies + Genres Hybrid: Content-Based + Collaborative,
Linear Regression (CB-LR)

Model 03 - Users and Movies Collaborative Filtering,
FunkSVD (CF-FunkSVD)

The models were fitted with an 8-fold cross validation to
find the best hyperparameters for the considered interval. For
CF-FunkSVD, the package surprise and the tools therein [10]
were used.

The primary error metrics employed in this study were the
mean absolute error (MAE) and the root mean squared error

(RMSE). The MAE considers all error equally, regardless of
their size, whereas RMSE strongly penalizes larger errors.

MAE =
1

n

n∑
i=1

|yi − ŷi| (6)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

C. Exploratory data analysis

The dataset comprises a diverse selection of movies span-
ning a wide range of genres, as illustrated in Fig. 1, with a
total of 20 genres.

Fig. 1: Distribution of movies per movie genre.

Despite the variety in genres, it’s important to retain that
generally movies are more complex than representing a single
genre. In that sense, it is useful to assess the similarity between
genres (using the cosine similarity index), as illustrated in Fig.
2. This helps understand how the task of recommending a
movie can start to grow more complex as we add more and
more detail to the dataset. In Table II the five most related
genres are shown.

2

Fig. 2: Cosine similarity index between genres.

TABLE II: The five most related genres per cosine similarity
index.

Genres Similarity Index

Animation Children .47
Action Adventure .40
Crime Thriller .38

Romance Comedy .36
Romance Drama .35

The dataset is relatively recent, with movies from the
2010’s, going all the way back to the early 1900’s, as per Fig.
3. As expected, there are much fewer ratings for older movies,
for two main reasons: older movies are less popular, and there
are less movies in general, as movie production picked up
substantially throughout the twentieth century.

Fig. 3: Movies distribution per year.

As expected, both distributions from Fig. 4 and 5 are
positively skewed, since in general there are more people

rating a small amount of movies, and the number of movies
with higher counts of ratings tends to decrease rapidly (as
there are very few, very popular movies).

This type of distribution is commonly found across rec-
ommender systems, and represents well the challenges posed
to these algorithms: sparsity, whereas most of the matrix
is empty (98.3 % of missing values); bias, popular movies
tend to dominate the analysis; and the long tail represents
the challenge to make recommendations based on the large
number of movies (or users) with very few ratings (or that
rated few movies).

Fig. 4: Distribution of movies based on the number of ratings,
starting from 1 rating in the first bin.

To finalize, it is important to mention (again) that the min-
imum number of ratings per user is 20, and the maximum is
2698. The minimum rating per movie is 1, and the maximum is
329 ratings. The most rated movies (and not so coincidentally)
the highest rated movies were:

• Forrest Gump (1994) - 329 ratings
• Pulp Fiction (1994) - 317 ratings
• The Shawshank Redemption (1994) - 307 ratings

IV. CLASSIFICATION MODELS

The three models here presented are first and foremost
linear regression problems, where by fitting a model with the
known data to the users and the movies, it will be possible to
estimate the ratings of movies that have not been reviewed. In
this sense, besides the model itself, it is necessary to fit two
hyperparameters, the learning rate α, and the cost parameter λ.
For both CF-LR and CB-LR 20 features were used for users,
and for movies (40 features in total). The number of features
was defined empirically, based on the number of genres in the
dataset (20 genres).

The first model developed aims to fit both movies (x
parameter) and users (θ parameter) simultaneously, as depicted
in the equation below, by optimization of the cost function with
regularization.

3

Fig. 5: Distribution of users based on the number of ratings,
starting from 20 ratings in the first bin.

min
x(1),...,x(nm)

θ(1),...,θ(nu)

1

2

∑
(i,j):r(i,j)=1

(
(θ(j))Tx(i) − y(i,j)

)2

+
λ

2

nm∑
i=1

n∑
k=1

(
x
(i)
k

)2

+
λ

2

nu∑
j=1

n∑
k=1

(
θ
(j)
k

)2

(8)

The second model fits only the users parameter (20 features
in total), given that it accounts for the movies parameters by
using the movie genres.

min
θ(1),...,θ(nu)

1

2

nu∑
j=1

∑
i:r(i,j)=1

(
(θ(j))Tx(i) − y(i,j)

)2

+
λ

2

nu∑
j=1

n∑
k=1

(
θ
(j)
k

)2

(9)

The third and final model is the famous FunkSVD. As men-
tioned in the state of the art, despite the many regularization
parameters, we’ve limited the analysis to the number of latent
features, overall learning rate (which could be fit for the many
features possible), and the regularization parameters.

A. CF-LR Model

Different ranges of α (between 0.0001 and 0.002) and λ
(between 0 and 100) were given to the model to be fit by
using 8 cross-validation in the training dataset. This allowed
to progressively lower RMSE, throughout 500 iterations.

The best hyperparameters for this model were λ = 6 and
α = 0.0005, with an average RMSE from 8-fold CV of
1.25622.

Fig. 6: Learning rate (α) and regularization parameter (λ) fine-
tuning for the CF-LR model.

Once the optimal hyperparameters were defined, the learn-
ing curve was estimated from the 8-fold CV on the training
dataset, to assess the validity of the model and that it is not
overfit. In Fig. 7 the progression of the training score and
the CV score tends to improve across the train set size, not
overlapping or changing the trend significantly. It is important
to bear in mind that there is a risk of slight overfitting,
considering that there are 40 features to be fit.

Fig. 7: CF-LR learning curve: 8-fold CV RMSE progression
throughout the training dataset.

Using the defined hyperparameters, the cost function was
estimated, where we see it sharply decreasing as the iterations
run, finally converging at the limit.

4

Fig. 8: Evolution of the CF-LR model’s cost function over
iterations.

With the model defined, the train and test sets were com-
pared for the errors (RMSE and MAE), as depicted in Table
III, showing an increase of errors in the test set in regards
to the training set. The fact that errors increased significantly
from the training to the testing set supports the likelihood of
overfitting the data.

TABLE III: Error metrics for the train and test set (CF-LR),
along with the number of samples for each.

Dataset RMSE MAE Support

Train Set 0.58842 0.44604 80668
Test Set 1.24037 0.90651 20168

B. CB-LR Model

The CB-LR model is less demanding as it is only estimating
the features related to the users, considering that the movie
features are estimated from the genres given per movie in
the dataset. Each movie is weighted in terms of how much
it is represented by a given genre (e.g., Pearl Harbor being
for example 33/33/33: war, drama and romance), which is
represented by vector x. The movie features don’t need to
be optimized, and as the name states, the model is a linear
regression content based, leaving the vector θ, user features,
to be optimized.

As seen in Fig. 9, α was optimized between 0.00005 and
0.007, whereas λ was varied between 0 and 10. The optimized
hyperparameters (as a result of 8-fold CV) are pinpointed
in the graph, corresponding to (0.05, 0.005) with 8-fold CV
RMSE of 0.98617.

Fig. 9: Learning rate (α) and regularization parameter (λ) fine-
tuning for CB-LR model.

As in CF-LR the learning curve was estimated to ensure no
overfitting occurred. In this case the trends vary in an identical
fashion for the whole training set, which is a good indicator
of an adequate fit.

Fig. 10: CB-LR learning curve: 8-fold CV RMSE progression
throughout the training dataset.

In Fig. 11 the cost function is minimized as in CF-LR,
indicating proper convergence of the model.

5

Fig. 11: Evolution of the CB-LR model’s cost function over
iterations.

The error metrics in Table VI further contribute to the
model’s proper fit, that do not vary significantly from the train
to the test set.

TABLE IV: Error metrics for the train and test set (CB-LR),
along with the number of samples for each.

Dataset RMSE MAE Support

Train Set 0.84859 0.65997 80668
Test Set 0.97254 0.74605 20168

C. CF-FunkSVD Model

The CF-FunkSVD model was designed with a minimal set
of optimized hyperparameters to reduce the risk of overfitting
and to evaluate the impact of these parameters on the model’s
performance. The optimization process was conducted using
a GridSearchCV with an 8-fold cross-validation. In Table V
the range of values for each hyperparameter is given, where
n factors corresponds to the number of factors, lr all is the
overall learning rate, and reg all the regularization parameter.
The remaining parameters are kept as default, indicated in
surprise Python package [10]. The best fit values were 50,
0.01, and 0.1, respectively.

TABLE V: CF-FunkSVD model hyperparameters search
space.

Hyperparameter Possible Values

n factors {5, 15, 30, 40, 50}
lr all {0.005, 0.01, 0.05, 0.1, 1}
reg all {0.02, 0.1, 1, 5, 10}

The learning curve (Fig. 12) shows a different behavior
considering what was observed in the other two models, where
both training and testing are converging, with the former
evidencing increasing RMSE, while the latter presenting a
decreasing trend.

With this sort of approach, as the training set increases
the model becomes more generalist, while compromising its
accuracy, resulting in an increased error. The fact that the
testing set shows decreasing RMSE is a sign that the model
is able to be more generic.

Fig. 12: CF-FunkSVD learning curve: 8-fold CV RMSE
progression throughout the training dataset.

As before, the error metrics evidence an adequate fit
between the training and testing set, considering that there
is not a significant increase of the error metrics between the
training and the testing sets.

TABLE VI: Error metrics for the train and test set (CF-
FunkSVD), along with the number of samples for each.

Dataset RMSE MAE Support

Train Set 0.75035 0.58313 80668
Test Set 0.87412 0.66957 20168

V. DISCUSSION

A. Performance Metrics

In order to assess the three models, RMSE and MAE are
presented in the form of boxplot (Fig. 13, obtained by applying
8-fold CV to the whole dataset (7 folds for fitting and 1 fold
for test), while using the optimized models. Despite the narrow
range of errors, showing a high precision and repeatability for
each model, CF-FunkSVD clearly outperforms both models
for both error metrics.

6

Fig. 13: Boxplot of RMSE and MAE error metrics determined
by 8-fold CV across whole dataset.

In Fig. 14 to 17, Top-N metrics are used, presenting the
performance of each model in the test set. These metrics intend
to express the relevance of the items retrieved or the order
in which these items are presented in a recommendation list.
The metrics used were precision (proportion of retrieved items
that are relevant), recall (proportion of relevant items that
are retrieved), F1-score (weighted harmonic mean between
precision and recall) and mean reciprocal rank (evaluates the
position in which the first relevant item appears) [11], [12].

Precision@k =
|L ∩ Iu|

|L|

Recall@k =
|L ∩ Iu|
|Iu|

F1@k =
2× Precision@k × Recall@k

Precision@k + Recall@k

MRR =
1

U

U∑
u=1

1

ranku
(10)

The value of these metrics depends on both the length of
the suggestion lists, which in this analysis were computed for
k ∈ [10, 100], and the reference list used for comparison (Iu),
which was fixed to the Top-10 movies per user.

One thing to consider right from the beginning, is that the
larger the list of ranked items the harder it is for any of the
algorithms to accurately identify it. In most of the metrics,
CF-FunkSVD performs better than the remaining, but only
slightly better for the Top-100 items.

Fig. 14: Precision@k for the test set, with k ∈ [10, 100] for
the three models.

Considering how recall is calculated (in relation to the
relevance list per user), it is considerably better for CF-
FunkSVD across the k range, while F1@k is consistently better
than the other two models. The CB-LR model performs well,
considering its simplicity, suffering mostly due to the large
error evidenced.

For MRR, it is notable how CB-LR performs considerably
worse than the other models (for any k), considering that
the features for the movies are estimated from their genres,
indicating that this might be a good starting point, but needs re-
finement. Interestingly, the Top-100 (k = 100) CF-LR surfaces
as the best performing model, even though the performance
over the whole range is comparable to that of CF-FunkSVD.

Fig. 15: Recall@k for the test set, with k ∈ [10, 100] for the
three models.

7

Fig. 16: F1@k for the test set, with k ∈ [10, 100] for the three
models.

Fig. 17: MRR@k for the test set, with k ∈ [10, 100] for the
three models.

B. Literature Benchmark

The models in question are simpler in application compared
to CF-FunkSVD, however, it is worthwhile to reflect on their
performance comparing with the literature. First and foremost,
the differences at this level are not so significant, as the CF-
FunkSVD depends largely on fine tuning of the multitude
of hyperparameters available. Nonetheless, it still outperforms
both types of linear regression.

TABLE VII: Models performance results for the test set.

Measure CF-LR CB-LR CF-FunkSVD

Precision@100 0.08073 0.07659 0.08585
Recall@100 0.80732 0.76585 0.85854
F1@100 0.14679 0.13925 0.15610
MRR@100 0.46304 0.31212 0.38477
RMSE 1.23691 0.97240 0.87268
MAE 0.90417 0.74607 0.66804

In the study conducted by Paullier et al. [11], seven different
models were tested under identical conditions, offering a com-
prehensive comparison framework and approach to addressing
this type of problem. The models developed and presented
in this paper align well with the performance benchmarks
reported in the literature.

While Table VII closely resembles the results presented in
Paullier’s work, it is important to note that the datasets used are
different. Paullier et al. utilized the smaller MovieLens 100k
dataset, whereas the current work is based on a larger dataset,
allowing for a more robust application of the FunkSVD
algorithm. This distinction highlights an improvement in per-
formance metrics for the FunkSVD model developed in this
paper, driven by the larger dataset’s ability to better capture
and fit the algorithm’s underlying structure.

VI. CONCLUSION

The purpose of this project was to learn, assess, and
employ different recommendation systems. The literature re-
view allowed to understand how different models based on
collaborative filtering emerged throughout the years, and one
of the biggest motivations for the rapid expansion of the field,
the Netflix prize. The dataset used is a benchmark in this type
of studies, decently sized, which allowed for proper fitting of
the models and comparison with the literature.

The developed models offer opportunities for further en-
hancement. Both collaborative filtering (CF-LR) and content-
based (CB-LR) models could benefit from a more systematic
approach to determining the optimal number of features, rather
than relying on empirical estimates. Additionally, the third
model presents numerous hyperparameters that warrant fine-
tuning, which could serve as a dedicated research endeavor.
There are several promising directions for future exploration,
including incorporating the FunkSVD model into an ensemble
algorithm.

WORK LOAD

Both authors contributed equally to the project.

REFERENCES

[1] J. A. Konstan and J. Riedl, “Recommender systems: From algorithms
to user experience,” User Modeling and User-Adapted Interaction,
vol. 22, no. 1-2, pp. 101–123, 2012. [Online]. Available: https:
//doi.org/10.1007/s11257-011-9112-x

[2] R. Katarya and O. P. Verma, “An effective collaborative movie
recommender system with cuckoo search,” Egyptian Informatics
Journal, vol. 18, no. 2, pp. 105–112, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1110866516300470

8

[3] A. Said and A. Bellogı́n, “Comparative recommender system evaluation:
benchmarking recommendation frameworks,” in Proceedings of the 8th
ACM Conference on Recommender Systems, ser. RecSys ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
129–136. [Online]. Available: https://doi.org/10.1145/2645710.2645746

[4] F. M. Harper and J. A. Konstan, “The movielens datasets: History
and context,” ACM Transactions on Interactive Intelligent Systems
(TiiS), vol. 5, no. 4, pp. 19:1–19:19, 2015. [Online]. Available:
https://doi.org/10.1145/2827872

[5] Netflix Prize Community, “Netflix prize forum: Topic
1537,” 2009, archived on the Wayback Machine. [On-
line]. Available: https://web.archive.org/web/20090924184639/http:
//www.netflixprize.com/community/viewtopic.php?id=1537

[6] S. Funk, “Netflix update: Try this at home,” 2006, accessed: 2025-01-09.
[Online]. Available: https://sifter.org/∼simon/journal/20061211.html

[7] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel
collaborative filtering for the netflix prize,” in Algorithmic Aspects in
Information and Management, R. Fleischer and J. Xu, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 337–348.

[8] P. Gopalan, J. M. Hofman, and D. M. Blei, “Scalable recommendation
with poisson factorization,” 2014. [Online]. Available: https://arxiv.org/
abs/1311.1704

[9] G. Research, “The movielens datasets,” 2025, accessed: 2025-01-09.
[Online]. Available: https://grouplens.org/datasets/movielens/

[10] N. Hug, “Surprise: A python library for recommender systems,” 2017,
accessed: 2025-01-14. [Online]. Available: https://surpriselib.com/

[11] A. Paullier and R. Sotelo, “A recommender systems’ algorithm eval-
uation using the lenskit library and movielens databases,” in 2020
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), 2020, pp. 1–7.

[12] M. D. Ekstrand, “Lenskit for python: Next-generation software for
recommender systems experiments,” in Proceedings of the 29th ACM
International Conference on Information and Knowledge Management
(CIKM ’20, Resource track). ACM, 2020, pp. 2999–3006, nSF PAR
10199450.

9

