
Lacuna Solar Survey Challenge: Counting
Photovoltaic and Solar Panels from Aerial Imagery

Hugo Verı́ssimo
Complements of Machine Learning 24/25

University of Aveiro
Aveiro, Portugal

hugoverissimo@ua.pt

João Cardoso
Complements of Machine Learning 24/25

University of Aveiro
Aveiro, Portugal

joaopcardoso@ua.pt

Abstract—This project was developed with the Lacuna Solar
Survey Challenge in mind, to create a model capable of identi-
fying photovoltaic and thermal solar panels from aerial imagery
(satellite or drone). The challenge is of public interest, to learn
about solar panel usage, and support in planning infrastructure
in Madagascar. The dataset presented issues such as inconsistent
masks and a severe class imbalance, which required manual
curation. Three types of models were developed: a hybrid
approach, of image-based regression combined with metadata
based estimation, object detection, and instance segmentation,
where the former was the best performing model. The benchmark
results indicated that there remains room for improvement, which
would necessitate a more refined curation of the dataset as well
as increased computational resources.

Keywords: solar panel detection, deep learning, image
feature extraction, object detection, instance segmentation

I. INTRODUCTION

Access to electricity and hot water has been a basic ne-
cessity for a long time in the developed world. In developing
countries, the lack of a centralized distribution system makes
this access harder for everyone. To address this gap, it is
essential for governments, non-governmental organizations,
and energy suppliers to understand how solar photovoltaic
and solar thermal panels (for electricity and water heating,
respectively) are distributed throughout the territory to ensure
proper planning and effective policy making. In this context,
a challenge was created by the Lacuna Fund and associate
entities in the Zindi platform to develop a machine learning
model capable of accurately counting the number of solar
thermal and photovoltaic panels in drone and satellite imagery.

In the present work, we have developed different approaches
to the problem at hand, where we need to count the two
types of panels separately: taking a regression type approach,
where images are analysed as a whole and the target number
of panels are provided per image; by identifying the panels
through object detection and counting them afterwards; and
by applying segmentation models to identify the regions of
interest, analysing them and counting the panels. The different
approaches were developed so that a single model for each
type would be able to tackle the task of identifying and
counting the different panels.

II. STATE OF THE ART

The task of detection of solar panels serves many purposes,
with the strongest focus of the works here documented being
on the detection and localization of solar panels in large areas
(countries). This type of assessment allows for proper planning
of infrastructure, and to adapt current maintenance through
peak output of dense areas with solar panels.

In the work of Malof et al. (2016) the authors developed
an automatic detection model of solar arrays, specific for
photovoltaic panels. The model developed had computational
efficiency at the forefront, with the purpose of being de-
ployed nation wide in the United States, hence a multi-
stage approach consisting of: pixel-wise feature extraction;
Random Forest (RF) Classifier; post-processing to improve
the pixel-wise classification accuracy for the object detection
phase; finalizing with the object detection, via thresholding
the finalized confidence map. This algorithm presents superior
performance to standalone RF, and was well remarked as an
initial assessment methodology for large areas [1].

The DeepSolar model allowed the creation of a nearly com-
plete contiguous solar panel installation map, and consists of
two parts, with different purposes: first, via transfer learning,
the convolutional neural network (CNN) classifier is trained on
labelled imagery that merely indicates the presence or absence
of panels (though the volume of data is considerable, at almost
400 000 images just for this task). The model is then enhanced
by adding an extra CNN branch directly connected to the
intermediate layers to add segmentation capabilities to the
model. The difference is that this approach allows the model
to be trained on the same dataset and to ”greedily” extract
the relevant features associated with solar panels, learning in
a semi-supervised manner. The model was able to achieve
the best result of 93.7% precision and 90.5% recall in non-
residential areas [2].

Different models have been proposed for panel detection
through image segmentation, using Mask R-CNN [3] , Ter-
nausNet, based on U-Net [4], MobileNet with U-Net backbone
[5], with different approaches to data preparation and applica-
tion. These models consistently score higher than 90% in terms
of precision, at the cost of higher computation times compared

1



to the examples previously mentioned (also for very different
task sizes). A couple notable aspects across publications: the
size of datasets (often in the tens of thousands of images), with
strong strategies for collecting and/or preprocessing, ensuring
that the models have the best possible starting point to learn
and develop; and the focus on a specific type of panel or
problem topic, not trying to solve multiple problems with a
single tool.

For the purpose of this work, three approaches to the
problem were developed to assess their strengths and merits,
which will be detailed in the following subsections.

A. Image-based Regression

Considering that each image is labelled in terms of the
amount of photovoltaic and thermal solar panels, the condi-
tions for training considering a regression approach are avail-
able. For this, deep neural networks (convolutional neural net-
works, CNN) were considered for their excellent capabilities
in extracting spatial features, but each with a distinguishing
feature.

ResNet (Residual Networks) was introduced in 2015 by
Microsoft, and is notorious for dealing with vanishing gradient
problem by skipping connections between neuron layers [6].
This allows the model to grow and have several layers (over
100), making it capable of learning a larger variety of features
from the first to the deeper layers, without suffering from
performance degradation.

DenseNet follows on the footsteps of ResNet, and was
introduced in 2016 by Huang et al., whereby the idea of
skipping connections is taken further, and every layer prior
to a given layer is connected to it [7]. This avoids the chain
multiplication problem (which leads to vanishing gradients),
while reusing previously learned features, retaining relevant
information throughout the deepness of the CNN. This archi-
tecture also has the benefit of using less parameters than CNN
in general (and ResNet as well).

EfficientNet (EffNet), the most recent of this group was
introduced by Google AI in 2019, and departs from the direct
implementation of the aforementioned methods, dealing with
vanishing gradients given its intrinsic architecture [8]. By
having MBConv (Mobile Inverted Bottleneck Convolution)
as its building block, it allows to extract spatial features
by expanding the number of channels to perform depthwise
convolution and applying separate filters per channel, that is
then compressed to the original size of the input. Whilst this
happens, the mechanism of squeeze-and-excitation determines
the importance of said features, further addressing the vanish-
ing gradient problem. This architecture is then expanded via
compound scaling (rather than arbitrarily), whereby the size
of the CNN (input resolution, depth and width) is adjusted
in a balanced manner, with the compound coefficient ϕ being
tuned by grid search.

B. Object Detection

With object detection, the model is trained on the basis of
bounding boxes surrounding the subject of interest, in order

to be able to identify them in new environments and types
of image. With multiple classes, the model discerns between
labels with class probabilities, estimated from the extracted
features of the assessed boxes (using a CNN) throughout the
image. One of the most famous and used models is YOLO
(”You Only Look Once”) introduced in 2015 by Redmon &
Fardhi, being a crucial model in fast object detection and
localization [9]. In a single stage, the model addresses the
localization and detection problems, where a CNN backbone
(that has changed with the released versions) is used, with
feature fusion layers (akin to the way learned features are
reused, involving various algorithms), and an output of the
likelihood of a class and the location of the bounding boxes.

C. Instance Segmentation

Building on the concepts previously presented on object
detection, instance segmentation addresses the problem of
identification by incorporating the information of object masks
[10]. These are tighter around the object (than bounding
boxes), which serve to add a layer to the YOLO algorithm.
A global prototype mask (that works with a separate, smaller
CNN) is generated for the whole image - this way once the
bounding box is determined, mask coefficients are estimated
in order to combine the prototype masks into an instance-
specific mask. This approach avoids per mask full resolution
segmentation, keeping the model size small and fast.

III. METHODOLOGY

A. Dataset & EDA

The dataset was provided within the Zindi challenge [11],
consisting of 4419 images, and per image metadata, consisting
of the source (drone or satellite), mask placement, and context
of the installation surroundings (e.g., roof, floor, array).

Of all the images, 3312 (75%) have detailed information
on the masks (location, number of panels within, if they are
photovoltaic or thermal). The remaining 1107 (25%) do not
have this information, only the metadata related to the image.
Hence, per design of the competition the train/test split is
75/25.

Fig. 1: Images of photovoltaic panels placed on the roof, from
drone (left side) and satellite (right side). The difference in
resolution between them is evident.

2



Fig. 2: The different panel placement possibilities (top right
is from satellite imagery). Bottom left image shows an image
that is atypical for a drone style image.

In Fig. 2 the image origin and placement are displayed,
which according to the challenge information were labelled
by expert personnel. Where the placement class was inconclu-
sive, the images are labelled as ”S-unknown” (the remaining
examples are self-explanatory). Besides the two classes to
be identified, the context and origin of the images means a
considerable number of combinations for the model to learn,
where some of these combinations might (and certainly are),
under-represented given the relatively small dataset.

The masks are not consistent throughout the dataset, with
a varying number of panels within them (some contain a
single panel, others might contain a complete array of up
to 200), which can be clearly seen in Fig. 3. In addition to
this inconsistency, there is also a strong imbalance between
photovoltaic and solar thermal panels, with approximately
95% of the dataset corresponding to photovoltaic panels.

From the sample images below, the difference in the quality
of the masks is stark. Several images were found to have
misaligned vertices of the masks, and several masks had a
large number of panels (as seen from the distribution afore-
mentioned). In principle, with the reference of the number
of panels within each mask, it might have a small impact
on some types of models, but the same model is in fact
learning features for different representations: rather than for
the representation of individual panels. This was an evident
obstacle to the implementation of YOLO type models, which
was dealt with, and further detailed in the following sections.

Fig. 3: Distribution of the number of panels within a single
mask.

(a) Sample image of accurate labelling, with a single panel per mask.

(b) Sample images of incorrectly marked masks: (on the left) mask
distorted, misrepresenting the panel; (on the right) excessive objects
within a single mask.

Fig. 4: Sample images from the Zindi dataset.

3



B. Preprocessing

The discussion forum for the competition was a fruitful
source of information on the dataset and how to address
it. As seen before, the incorrectly defined masks, and the
masks with several panels represented hindrances to achieve
the best possible performance. Besides that, some of the masks
were shifted from the actual position of the panels, which
considering that all were identically shifted, seemed deliberate
from the competition. By manually analysing every image
it was possible to detect such images (with wrongly drawn
masks and shifted), and correct them. Upon completing the
dataset revision, 263 of the training samples were discarded
due to poorly drawn masks (the remaining images that had
misaligned masks were corrected).

Once the dataset was ready, an online data augmentation
process was devised in order to increase the amount of training
data and diversify it, enhancing the generalizability of the
trained models. The transformations HorizontalFlip, Verti-
calFlip, RandomRotate90, GaussianBlur, CLAHE (Contrast
Limited Adaptive Histogram Equalization), HueSaturationVa-
lue and Normalize were applied before all training cycles. The
images were all resized to 512x512, to lower the computational
burden and homogenize the code throughout the pipeline.

IV. MODELS

In the following subsections, A through C, the approach
and results of the developed models are presented. The hybrid
model zulo40 is used as a benchmark, as it was one of the
best-performing in the competition and was kindly shared in
the discussion forum. The models in subsection A. Image-
based Regression are based on this model’s approach. The
models in A. Image-based Regression were selected from
PyTorch (torchvision) package, and the ones from B.
Object Detection and C. Instance Segmentation are from
ultralytics package [12]–[14].

The training examples were split between training and
validation (80/20) across all the models’ training. The best set
of hyperparameters was selected from a randomized search
in a cross-validation (CV) set up. Unlike what is commonly
done with K-fold CV, due to the long processing times and
high computational load, the number of CV repetitions was
adjusted 3 times (and not the usual 5 times), and averaged
over them. We acknowledge the downside of this approach,
particularly the fact that only 60% of the data is exposed to
validation and the reduced diversity of the models trained.
These aspects become particularly evident due to the relatively
small size of the dataset.

A. Image-based Regression

This approach had the purpose of incorporating the informa-
tion from the metadata in the labels with the feature extracted
with CNN backbone by transfer learning. In Fig. 5 we present
the schematics for the model’s architecture.

Fig. 5: Architecture of the model shared by user zulo40 in the
discussion forums. [15]

After feature extraction, the data was processed through
fully connected layers, followed by a multi-head attention
mechanism to enhance the embeddings. The multi-head at-
tention mechanism is an important technique of CNN from
the Transformers architecture, whereby the attention (i.e., the
importance of certain features) is estimated several times in
parallel, allowing the model to learn different patterns and
relationships between different sets of features. Finally a
regression head predicts the number of panels (photovoltaic
and thermal solar) in a given image. The backbones tested
were DenseNet121, EfficientNetv2B3 and ResNet101, and
after an initial assessment, EfficientNetv2B3 achieved the best
performance and the hyperparameters were further fine-tuned
with the ranges specified in Table I.

The criterion for the selection of the best model was MAE
(mean absolute error, the metric used in the Zindi challenge),
which gave the following hyperparameters marked in bold
in Table I. The hyperparameters were selected for a small
number of combinations, given how time consuming training
each model is.

TABLE I: Hyperparameter space for the models based of
the hybrid model zulo40. The bold values correspond to the
selected hyperparameters.

Hyperparameter Possible Values

Batch size {16, 32, 64}
Optimizer AdamW
Learning rate [10−5, 10−3]
Weight decay [10−5, 10−3]
Dropout {0.2, 0.3,0.4}
Scheduler CosineAnnealingWarmRestarts
T 0 {3,5, 7, 10}
T mult {1,2, 3, 5}
Loss HuberLoss
δ 1

4



Upon selecting the best model, the final inference on the
test data was done resorting to TTA, Test-Time Augmentation,
where the model makes multiple predictions on augmented
versions of the same image (e.g., flipping, scaling, cropping).
With this, the final result is an average of the group of predic-
tions. The scheduler selected (CosineAnnealingWarmRestarts)
dynamically changes the learning rate following a cosine
schedule, with a defined period (T 0 = 5), where at each period
the learning rate decays to a minimum, restarting at the highest
set learning rate. This allows to prevent convergence to local
minima, by passing through higher learning rates periodically,
allowing for fine tuning with lower learning rates for longer
periods (given T mult = 2, where the period increases two
fold at each restart).

The erratic behaviour of the CV loss curve is evident from
Fig. 6, likely due to the small validation set (20% of an already
small dataset), which leads to variance spikes due to the
changing samples within. The training loss is rather smooth,
with periodical increases well in line with the scheduler’s
algorithm (5, 5 + 10, 15 + 20, ...).

Fig. 6: Learning curve for the best fit model, with Training
and Cross-Validation Loss plotted (with standard deviation in
shade). The dashed lines correspond to the early stops of each
fold.

The training proceeded for 75 epochs, where the best model
was selected based on the lowest validation MAE. From the
learning curve, it does not seem to be overfit, but considering
the MAE metric and the test set from the Zindi challenge,
the test MAE is slightly higher than the training MAE (Table
II, indicating that the model is not capable of generalizing
so well. Despite the slight generalization gap, the overfitting
chance is debatable, as this is an absolute value metric, which
represents a difference of less than half a panel per prediction.

TABLE II: Error metrics for the Hybrid Model, for the train
and test set, along with the number of samples for each.

Dataset MAE Support

Train Set 0.5127 3312
Test Set 0.8434 1107

B. Object Detection

Upon initial testing of YOLO models in the dataset, it
was clear from the beginning that the labelling style posed a
major hindrance to the type of models relying on masks/labels,
which resulted in significant loss in performance. Based on
this assessment, an individual review of roughly 200 images
was conducted and individual masks for each panel (either
solar thermal or photovoltaic) were created, which resulted in
roughly 1000 individual masks (mostly for photovoltaic). To
train these models, only images with individual masks were
considered, resulting in a reduction in size of the dataset of
roughly 40%. The remaining individual masks were trans-
formed to bounding box notation (COCO, Common Objects
in Context, notation style).

As for the previous section, the criterion for selecting the
best model was the MAE. A small number of hyperparameter
combinations was tested, due to the time-consuming nature of
training. The possible values considered for each hyperparam-
eter are listed in Table III.

TABLE III: Hyperparameter space for the YOLO model. The
bold values correspond to the selected hyperparameters. The
remaining parameters are left as default.

Hyperparameter Possible Values

Batch size {16,32}
Model {yolov8l, yolo11m, yolo11l}
Image size 512
Augmentation True
Early stopping patience [15,25]
cls [0.5,1.5]
lr0 [10−5, 10−3]
lrf [0.1,1]
mixup [0,0.75]
copy paste [0,0.75]
scale [0.5,1]

From the different model fits, Fig. 7 displays the MAE
ranges using boxplots. The YOLOv8L model, for instance,
was trained three times with distinct hyperparameter sets, high-
lighting the importance of tuning. The model with the lowest
mean MAE was selected (YOLOv8L-3), and its corresponding
hyperparameters are marked in bold in Table III.

5



Fig. 7: CV MAE for each model. Each boxplot represents the
values obtained during the cross validation of each model.

The results from the best model are shared below, although
one should bear in mind that the metrics shared are for the
model’s main goal (i.e., object identification), and only after
the training it was possible to apply the model to the test set
and count the number of panels of each kind. Unlike in the
previous section, the cross-validation and training loss curves
(Fig. 8) do not evidence the spikes seen before (no learning
rate scheduler used), but the axis scale might deceive the
interpretation: the cross-validation loss still has a considerable
variance in comparison with the training loss curve. This still
is due to the difficulty in generalizing the learning, with such
small dataset. Despite this fact, the learning curves progress
well and do not evidence overfitting, although the variance of
the training curve increases drastically at the very late stages
of training. One aspect to notice is how the CV loss curve is
below the training loss: which might seem strange, but due
to the heavy augmentation and the usage of parameters that
target class imbalance (copy paste = 0.75; mixup = 0.75) the
model has a harder time learning the features of the target
objects.

The resulting F1-Confidence curve (Fig. 9) is a typical
analysis for this type of models, as it relates two important
metrics: F1-score, which is a result of the precision and recall
of the predicted samples; and confidence, which consists of the
product of the probability of a given object existing within the
bounding box, and the probability of a given class given that
object is in the box. The equation for confidence is available
below.

Confidence = P (object)× P (class | object)

Fig. 8: Learning curve for YOLOv8L-3, with Training and
Cross-Validation Loss plotted (with standard deviation in
shade). The dashed lines correspond to the early stops of each
fold.

Moreover, confidence is a result of the training process,
where during each image pass through the CNN the prob-
abilities for objectness (i.e., presence of object) and class
are learned from training. This output serves as the final
layer’s activation, shaped by the training, which will reflect
the training and be used during inference stage to assess de-
tection certainty. The evaluation of predictions (i.e., evaluating
true/false positive/negative) is based on IoU (Intersection over
Union), comparing the predicted mask (Bp) with the ground-
truth (Bgt) for that image. It also allows to avoid the usage of
overlapping predictions, removing redundant bounding boxes.

IoU =
Area of (Bp ∩Bgt)

Area of (Bp ∪Bgt)

The highest F1-score in the range is 0.80 from early
confidence of 0.35, with both classes following closely at the
top of the F1-score range for most of the confidence interval.

Fig. 9: F1-Confidence curves for YOLOv8L (graph automati-
cally generated from the ultralytics package.

6



Despite efforts to achieve a better model, the MAE of the
train and test sets were among the worst evaluated, especially
when considering how low the MAE for CV training was.

TABLE IV: Error metrics for the Object Detection Model, for
the train and test set, along with the number of samples for
each.

Dataset MAE Support

Train Set 1.4330 3312
Test Set 1.2645 1107

C. Instance Segmentation

Using the same labels prepared in section B., the different
models were fit for random combinations of hyperparameters,
as listed in Table V.

TABLE V: Hyperparameter space for the YOLO-seg model.
The bold values correspond to the selected hyperparameters.
The remaining parameters are left as default.

Hyperparameter Possible Values

Batch size {8, 32, 16}
Model {yolov8l-seg, yolo11m-seg, yolo11l-seg}
Image size 512
Augmentation True
Early stopping patience [10,25]
cls [0.5, 2.5]
lr0 [10−4,10−3]
lrf {0.01,0.1, 1}
mixup [0, 0.5]
copy paste [0, 0.8]
scale [0.5, 1]

The MAE of the different folds for the models listed are
presented in Fig. 10 are represented as boxplots, where the
best model (YOLOv11L-1) was selected for further analysis.

Fig. 10: CV MAE for each model. Each boxplot represents
the values obtained during the cross validation of each model.

In Fig. 11 the CV loss curve stabilizes early on, whereas
the training loss decreases until around the 80th epoch, after
which, one of the folds keeps training but not diminishing the
loss significantly. The fact that the CV loss does not change
throughout the training is telling of how the model struggled
to learn and generalize the features from the dataset. This
might well be due to the reduced dataset size (mentioned pre-
viously), and the fact that some of the ideal hyperparameters
(copy paste = 0; mixup = 0) did not promote replication of
the minority class. The training of the longest fold stopped at
the 92nd epoch due to early stopping.

Fig. 11: Learning curve for YOLOv11L-2, with Training
and Cross-Validation Loss plotted (with standard deviation in
shade). The dashed lines correspond to the early stops of each
fold.

For the F1-Confidence curve (Fig. 12) all classes attain F1-
score of 0.76 at 0.46, which is a lower F1-score and narrower
confidence range than the object detection model. The class
curves also follow very distinct trends, with the F1-score of
the thermal solar panels being considerably worse than that of
the photovoltaic panels.

Fig. 12: F1-Confidence curves for YOLOv11L-2 (graph auto-
matically generated from the ultralytics package).

7



The MAE for the train and test set is similar, with the
MAE for the test set being slightly lower (Table VI). This
is consistent with the results presented, being this the model
that performed the worst among the group.

TABLE VI: Error metrics for the Segmentation Model, for the
train and test set, along with the number of samples for each.

Dataset MAE Support

Train Set 1.5645 3312
Test Set 1.3415 1107

V. DISCUSSION

In order to provide a representative comparison of the three
models, each fold of the final model was used to pass the test
set through it and the MAE score was collected from the Zindi
Challenge website. The results are shown in Fig. 13, where
the Hybrid model clearly shows a lower value of MAE (both
on average and range). Both Object Detection and Instance
Segmentation show a narrower range of MAE, but worse than
the Hybrid model.

Fig. 13: CV MAE for each fine-tuned model. Each boxplot
represents the values obtained from running the test set
through each fold of the model, and retrieving the MAE from
the Zindi platform.

The worst performance for the YOLO models is likely
related with the reduced dataset size, given the need to work
with curated labels and masks, whereas the Hybrid model
could be fed the whole dataset with the target values for the
photovoltaic and thermal solar panel counts per image.

The MAE on the test set was also compared to the best
and second best models in competition, which is displayed in
Table VII. The best model in the challenge has documented the
approach, and a distinct strategy was deployed, by splitting the
dataset between image origin (drone and satellite, to prevent
interference in the learning of the distinguishing features of
each) and employing ensemble models for each case. These

ensembles are weighted, selecting the best model considering
the features of the given image. The models used were
YOLO, DDQ (Dense Distinct Query), and DINO (DETR with
Improved DeNoising Anchor Boxes for End-to-End Object
Detection). DDQ and DINO are models of the DETR family
(DEtection TRansformer) [16]. The approach used by the
second best model remains undocumented.

TABLE VII: Error metric (MAE) for the fine-tuned models,
along with the best performers in the competition.

Model MAE (Test Set)

Hybrid 0.8434
Obj. Det. 1.2645
Inst. Seg. 1.3415
Team Lacuna (1st) 0.3299
K Junior (2nd) 0.5698

VI. CONCLUSION

The objective of this project was to develop a model
capable of counting photovoltaic and solar thermal panels
in imagery from drone and satellite sources. Despite initial
challenges with the dataset, such as poorly labelled images,
faulty masks, and imbalanced classes, the dataset was reviewed
and improved where possible, leading to the development
of reasonably well-performing models for the task, with the
hybrid model achieving the best performance among the
evaluated models.

WORK LOAD

Both authors contributed equally to the project.

REFERENCES

[1] J. M. Malof, K. Bradbury, L. M. Collins, and R. G. Newell, “Automatic
detection of solar photovoltaic arrays in high resolution aerial imagery,”
Applied Energy, vol. 183, p. 229–240, Dec. 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.apenergy.2016.08.191

[2] G. Yu, J. Wang, A. Majumdar, and R. Rajagopal, “Deepsolar: A machine
learning framework to efficiently construct a solar deployment database
in the united states,” Joule, vol. 3, no. 3, pp. 813–823, 2019. [Online].
Available: https://www.cell.com/joule/fulltext/S2542-4351(18)30570-1

[3] K. He and L. Zhang, “Automatic detection and mapping of solar
photovoltaic arrays with deep convolutional neural networks in high
resolution satellite images,” in 2020 IEEE 4th Conference on Energy
Internet and Energy System Integration (EI2), 2020, pp. 3068–3073.

[4] B. B. Kausika, D. Nijmeijer, I. Reimerink, P. Brouwer, and
V. Liem, “Geoai for detection of solar photovoltaic installations
in the netherlands,” Energy and AI, vol. 6, p. 100111, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2666546821000604

[5] M. A. Wani and T. Mujtaba, “Segmentation of satellite images of
solar panels using fast deep learning model,” International Journal of
Renewable Energy Research (IJRER), vol. 11, no. 1, pp. 32–45, 2021.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[7] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2018. [Online]. Available:
https://arxiv.org/abs/1608.06993

[8] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” 2020. [Online]. Available: https:
//arxiv.org/abs/1905.11946

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016. [Online]. Available:
https://arxiv.org/abs/1506.02640

8



[10] E. Mohamed, A. Shaker, A. El-Sallab, and M. Hadhoud, “Insta-
yolo: Real-time instance segmentation,” 2024. [Online]. Available:
https://arxiv.org/abs/2102.06777

[11] Zindi, “Lacuna solar survey challenge,” https://zindi.africa/competitions/
lacuna-solar-survey-challenge, 2025, accessed: 2025-04-07.

[12] T. maintainers and contributors, “Torchvision: Pytorch’s computer vision
library,” https://github.com/pytorch/vision, 2016.

[13] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[14] G. Jocher and J. Qiu, “Ultralytics yolo11,” 2024. [Online]. Available:
https://github.com/ultralytics/ultralytics

[15] zulo40 at Zindi Africa, “Lacuna solar survey challenge - lb 0.98 approch
+ code,” https://zindi.africa/competitions/lacuna-solar-survey-challenge/
discussions/25675, 2025, accessed: 2025-04-15.

[16] WoWoGG at Zindi Africa, “Lacuna solar survey challenge
- best performing model,” https://zindi.africa/competitions/
lacuna-solar-survey-challenge/discussions/25674, 2025, accessed:
2025-04-15.

9


