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Abstract—Improving performance of elite athletes is the ulti-
mate goal of any sports coach. For proper planning and continued
improvement, a good balance between workload and rest is
crucial. There are several metrics used to assess the impact
of the workload that athletes are subject of, with the rate of
perceived exertion being amongst the most relevant throughout
decades of research in the field. For this project the authors used
data from the 2019/2020 season from the local swimming club
CAPGE, provided by Head Coach Daniel Tavares, in order to
develop machine learning models for fatigue prediction. The data
consisted of athlete’s feedback and training load, of which a set
of features was selected and average over different periods. The
models used were logistic regression, support vector machine,
and decision tree. Overall the models performed decently, with
support vector machine standing out as the best performing. The
model developed was documented and shared in Excel format for
practical application, and will be followed up with further data
collection.

Keywords: swimming, fatigue prediction, logistic regres-
sion, support vector machine, decision tree

I. INTRODUCTION

The evolution in performance of high level athletes is
highly dependent on their skill, motivation, and discipline.
With the support of a knowledgeable coach, the evolution
can be substantially improved, through careful tailoring of
the training regimen. One of the most relevant metrics since
the beginning of structured training in sports is the feedback
from the athlete, commonly described as the rate of perceived
exertion (RPE). This single metric comprises the athletes
analysis and intuition of the effort that was carried and how
ready they feel for the next session of training. In recent
years, more and more sports coaches have relied heavily on
collected data to better assess, plan and adjust the training
plans of their athletes in a systematic way. This allows for a
fine balance between intense workouts, that generate stronger
stimuli for muscle development and sport specific skills, taking
the balance between effort and fatigue as the crucial ratio to
respect. Too high effort, may lead to injury, too low and some
gains may be left on the Table [1].

In the scope of the first project for Foundations of Machine
Learning, the authors decided to partner with a local sports
club CAPGE (Clube Associação de Pais da Gafanha da
Encarnação) to process the data (kindly shared by Head Coach
Daniel Tavares), to develop a general machine learning (ML)
model for estimating the fatigue in swimming athletes. The
data was curated and prepared to be fit through different
machine learning algorithms to estimate fatigue after workout.

With this approach, the goal is to generalize the models for
different athletes/sports, and make it available to the local club
for implementation and further testing.

II. STATE OF THE ART

Over the past decade there have been significant improve-
ments in the field of ML applied algorithms for sports’ related
applications. The most relevant work in fatigue and injury
prediction is briefly discussed in the present section, which is
not specifically on the sport assessed in this project, which lead
to additional interpretations from the works analyzed to our
own case of study. In general, the problem of class imbalance
is seen throughout the literature, and different solutions are
proposed, such as data gathering and preprocessing, over
sampling and under sampling, with SMOTE (synthetic minor-
ity over-sampling technique) being the most commonly used
approach for over sampling [2]. As early as 2010, Gabbet and
colleagues modeled the risk of injury with a monodimensional
approach using logistic regression, based on athletes rate of
perceived exertion, showing that even with a monovariate
approach to injury prediction useful results could be attained
[3]. In recent years, several authors have focused in alternative
techniques such as Logistic Regression [4], Random Forest [5],
Support Vector Machine [6], or Convolutional Neural Network
on Multivariate Timeseries [7].

Besides model selection, feature engineering and selection
is among the most debated topics. Several authors opt to
include GPS data, metabolic consumption, mechanical load,
RPE, detailed quantification of workloads, ratio between
acute:chronice loads. Despite the multivariate imputation, data
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analysis often shows strong correlations between them, leading
to overfitting problems (usually model independent) [2].

In the work by Carey et al. (2018) different algorithms have
been implemented to predict the risk of injury in an Australian
football club. The data collection lasted for three seasons,
consisting of absolute and relative training load metrics, de-
rived from GPS, accelerometer, and RPE data. The prediction
models used were regularized logistic regression, generalized
estimating equations, random forests, and support vector ma-
chines, with periods of 3, 6, and 21 days (these periods have
been studied and verified as adequate for the case of Australian
football). The periods served to calculate moving averages and
exponentially weighted moving averages (EWMA). The latter
allowed to account for the decay in significance of the training
load the further it happened from a given day, in accordance
with the work from Williams et al. (2016). From the results it
was possible to verify that overfitting was very likely due to
the multicollinearity between variables, which was confirmed
by principal component analysis (PCA). The use of PCA with
regularized logistic regression slightly improved the results [6].

More recent studies have employed ensemble algorithms, in
order to take most of the different learning models selected,
taking into account the need to balance the classes as is
common practice for this type of problems [8].

In summary, the integration of machine learning techniques
in sports fatigue and injury prediction has evolved from simple
monovariate models to complex multivariate and ensemble
approaches. Addressing challenges such as class imbalance,
feature selection, and multicollinearity remains crucial for
developing robust predictive models applicable across different
sports contexts.

III. METHODOLOGY

The methodology for this project consisted of three major
steps: assessment and curation of the dataset, feature engineer-
ing and selection of features, followed by data normalization;
training of the selected machine learning models; finalizing
with model evaluation and subsequent training until optimum
results were achieved. Fig. 1 illustrates the methodology used
in this project.

The programming language used was Python, and
the packages available therein, with notable mention for
scikit-learn [9]. After data normalization for all fea-
tures (using StandardScaler), the data was separated
between training and testing data (80/20, respectively), using
the train_test_split function from sklearn. The
seeds for randomization were kept consistent across mod-
els, to ensure reproducibility, and avoid biases towards any
model. The ML models selected for the project were Logistic
Regression (LogReg), Support Vector Machine (SVM), and
Decision Tree Classifier (DTree), where the modeling ap-
proach and hyperparameters are detailed throughout. For the
given hyperparameters available in each model the function
RandomizedSearchCV was used, to optimize the model,
with 8-fold cross-validation, to minimize the risk of overfitting

Fig. 1: Flowchart of the methodology for data processing and
modeling. The evaluation results are used to refine the model
training process.

(the selected 8-fold CV was consistent throughout all the
relevant stages, class weight estimation, training).

The metrics used to assess the different models are pre-
sented in Table I, and are consistent with those used in the
literature.

TABLE I: Metrics for multiclass classification model evalua-
tion.

Measure Formula

Precision (per class i)
TPi

TPi + FPi

Recall (per class i)
TPi

TPi + FNi

F1-score (per class i) 2 ·
Precisioni · Recalli

Precisioni + Recalli

Accuracy
∑C

i=1 TPi∑C
i=1(TPi + TNi + FPi + FNi)

Given the class imbalance associated with the problem at
hand, the importance of precision, recall and F1-score per
class are especially relevant, along with the confusion matrix,
to understand how the model is failing to correctly classify
the various observations. The precision is the ratio of true
positives for all the positives attributed (the higher, the better).
Recall (or sensitivity) gives the ratio of true positives among
true positives and false negatives, where lower values indicate
a higher number of misidentified true positives. The F1-
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score provides a balanced assessment of the model, taking a
harmonic mean of precision a recall, providing a particularly
good way to assess datasets with imbalanced classes, while
accuracy provides an overall assessment with the ratio of true
positives and true negatives over the total predictions.

The learning curve was used for all models, to highlight
the relation between the size of the training dataset and the
performance of the adjusted model, providing a good insight
into the quality of the fitting. In the case of increasing accuracy
of the training curve while the validation curve remains
constant or decreases below the training curve, is a clear sign
of overfitting. In the case that both curves converge, but to low
values (below 0.6) is a sign of under fitting and poor learning
from the model.

The confusion matrix was used to assess the performance in
estimating each class during training and testing, giving a clear
idea how the model is trying to predict the classes, helping to
better interpret the class weights attributed.

The methods and ML models used are consistent with those
in the literature, considering the type of features and target in
this project. Moreover, during the model refinement stage a
reassessment of past steps was carried in order to ensure no
gaps in the process.

IV. DATASET ANALYSIS

A. Data Description

The data used in this project was collected from the swim-
ming club CAPGE during the season of 2019/2020, where
each athlete has several observations corresponding to training
days, where each of the features was collected. Not all athletes
logged the same number of training days, nor present an
equal distribution between low, average and high levels of
intense training. The names of the athletes were removed to
ensure privacy and confidentiality, keeping only the gender as
a variable. The team is comprised by seven athletes, three male
and four female. Most of the features are related to feedback
from the athletes on different aspects of their lives (i.e. sleep
quality, appetite, and rate of perceived exertion after training),
while others are measurable (i.e. workload, variation in heart
rate before and after training, weight variation). A notable
feature to mention is the RPE, that is still deemed as one of
the most relevant metrics for workload planning and fatigue
assessment. All these attributes are classified between 1 — 10,
each value corresponding to increasingly ’worse’ categories
(e.g., 1 great appetite / normal, 10 no appetite at all).

The fatigue index is calculated from these features, using
weights attributed by the coach based on his empirical experi-
ence. The resulting fatigue index is between 0 — 100, which
was categorized in four classes as seen in Table II.

TABLE II: Classification of fatigue index into categories based
on numerical ranges.

Range Initial Classes Final Classes

≥ 90 Risk Risk/Caution≥ 80 Caution
≥ 40 Optimal Optimal
< 40 Low/Minimal Low/Minimal

There is a large gap between fatigue classes due to the
nature of training and performing high effort workouts in
specific times of the training cycle. The dataset was provided
in Excel format (per athlete), from which we imported and
combined the data as a pandas DataFrame to apply the
different models.

B. Dataset curation

The initial assessment evidenced the need for balancing
our data. To start, we’ve reduced the number of classes, by
combining the two higher risk classes (’Caution’ and ’Risk’).
With this, the number of observations was closer between
’Low/Minimal’ and ’Risk/Caution’, leaving us with an excess
of observations for ’Optimal’, as seen in Fig. 2.

Fig. 2: Bar plot of the new classes, once ’Caution’ and ’Risk’
are combined into one.

At this stage, we opted to under sample our dataset to the
number of observations of ’Risk/Caution’, and over sample the
observations in ’Low/Minimal’, by imputing random samples
from the pool of observations of ’Low/Minimal’, ending up
with 213 observations per class (regardless of gender). The
use of SMOTE in this scenario would give continuous classes
for our ordinal features, which wouldn’t yield any physical
meaning.

To assess how the different features vary among them and
in relation to the target, we computed the correlation matrix
as seen in Fig. 3.
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Fig. 3: Correlation matrix for all possible features considered
for the models.

From the correlation matrix it was possible to exclude
several of the features, which was verified by how the classes
are distributed across the scales for each feature. Fig. 4 and 5
illustrate a proper and poor example of class distribution for
the given features respectively.

Considering that the weights used in the coach’s original
estimation of fatigue were identical regardless of sex, the
authors performed some simple models in order to decide if it
would be necessary to split it. It could be verified that gender
didn’t have a significant impact in model performance, so we
opted to use it as a feature.

Fig. 4: Class distributions across perceived effort.

Fig. 5: Class distributions across state spirit.

Fig. 6 illustrates the periodicity of higher training loads and
subsequent lower intensity periods. It is important to refer that
once the two higher intensity classes were combined the loss
of granularity of how fatigue changes throughout the season
is evident.

(a)

(b)

Fig. 6: Daily fatigue trends for athletes (a) F f and (b) F m.
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In order to keep the time series nature of training, increase
and decrease of training intensity, and varying fatigue with
training, an exponentially weighted moving averages (EWMA)
was included [10].

This way memory is introduced in the models, allowing
consideration of the decay in the weights of events further
away from any given day. The mathematical expression used
to calculate EWMA for each selected feature is,

EWMAtoday = Featuretoday · λa + (1− λa) · EWMAyesterday

where λa is a value between 0 and 1 that represents the degree
of decay, with higher values discounting older observations at
a faster rate. The λa is given by:

λa =
2

N + 1

Where N is the time decay constant, with a 1 week and 4
week workload representing the acute and chronic workloads,
respectively [11].

At this point, it was possible to select the most relevant
features for the ML models, which are shown in Table III.

TABLE III: Feature descriptions.

Feature Description

Sex F Athlete’s gender.
pEffort Perceived effort from the workout.
uaI Intensity from each workout.
SleepInd Index based on quality of sleep and time in bed.
Appetite(MA6) Appetite measure, averaged with EWMA(6).
pEffort(MA6) pEffort averaged with EWMA(6).
uaI(MA6) uaI averaged with EWMA(6).
SleepInd(MA6) SleepInd averaged with EWMA(6).

V. CLASSIFICATION MODELS

In the following sections, VI to VIII, the results for the
three machine learning models are presented and detailed in
equal fashion, to ease the discussion and interpretation in
the section IX. As was mentioned in the methodology, the
modeling approach was the same for all, and here the training
dataset results are presented first, followed by the test dataset
results.

VI. LOGISTIC REGRESSION

The logistic regression model was developed by exploring
different ranges for the hyperparameters, including C, the
inverse of the regularization parameter, and allowing for the
selection of various regularization methods, as can be assessed
in Table IV.

TABLE IV: Logistic regression model hyperparameters search
space.

Hyperparameter Possible Values

C [0.01, 300]
Regularization {L1, L2, none}

Due to the suboptimal performance of the ’Optimal’ class
in terms of precision, it was also decided to adjust the class

weights for ’Risk/Caution’ and ’Low/Minimal’ within a range
of 0.1 to 2. The resulting model with the highest accuracy is
illustrated in Fig. 7.

Fig. 7: Effect of the ’Risk/Caution’ and ’Low/Minimal’ classes
weight on LogReg model accuracy.

Since the highest accuracy was achieved with class weights
of 0.64 for ’Low/Minimal’ and 0.97 for ’Risk/Caution’, these
values were selected, while the original weight for the ’Opti-
mal’ class was retained (woptimal = 1). For model optimiza-
tion, the remaining hyperparameters were set to C ≈ 2.13,
the cost function was L1 (Lasso regularization) and the solver
used was SAGA (Stochastic Average Gradient Augmented).
Despite the fact that it is most commonly used for large
datasets, it was the best performing kernel of those available
in the initial assessment, with the advantage that it allowed
for regularization. The equation for the solver is given by,

min
θ

1

N

N∑
i=1

log
(
1 + exp

(
−yiθ⊤xi

))
+

1

C
R(θ)

The learning curve shown in Fig. 8 illustrates the relation-
ship between the training set size and the performance of
the adjusted model, providing valuable insight to assess the
model’s behavior in terms of overfitting or underfitting. In
this case, the learning curves from the training and the cross-
validation converge after the largest training set size of 450,
with no signs of overfitting.
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Fig. 8: LogReg model performance using learning curve
representation across varying training data sizes.

Considering the confusion matrices of the training (Fig. 9)
and test datasets (Fig. 10), it is possible to learn how well
the model attributes true and false positives, and how they are
distributed. For this particular model it is visible how similar
they are, and how much better the prediction performance
is for the classes in the extremities (’Low/Minimal’ and
’Risk/Caution’), regardless of the weight attributed to the
’Optimal’ class (even though a marginal improvement was
observed compared to the initial weightless model).

The classification report provides a more straightforward
comparison between the training (Table V) and the test
datasets (Table VI), while showing class specific the perfor-
mance metrics, further confirming the interpretation of the
confusion matrix. Both classification reports present similar
values, which is a good indicator that the model is properly
fitted. As previously mentioned, the performance metrics are
worse for ’Optimal’ when compared to the remaining classes.

Fig. 9: Confusion matrix for the training data of LogReg
model.

TABLE V: Classification report for LogReg model perfor-
mance evaluation on training data.

Class Precision Recall F1-Score Support

Low/Minimal 0.79 0.64 0.71 170
Optimal 0.53 0.54 0.53 170
Risk/Caution 0.61 0.72 0.66 171

Accuracy 0.63 511
Macro avg 0.64 0.63 0.63 511
Weighted avg 0.64 0.63 0.63 511

Fig. 10: Confusion matrix for the test data of LogReg model.

TABLE VI: Classification report for LogReg model perfor-
mance evaluation on test data.

Class Precision Recall F1-Score Support

Low/Minimal 0.72 0.65 0.68 43
Optimal 0.52 0.52 0.53 43
Risk/Caution 0.71 0.76 0.74 42

Accuracy 0.65 128
Macro avg 0.65 0.65 0.65 128
Weighted avg 0.65 0.65 0.65 128

VII. SUPPORT VECTOR MACHINE

Given the increased complexity compared to LogReg, the
support vector machine (SVM) model allows for manipulation
of a larger number of hyperparameters, which consequently
lead to longer computation times to achieve the best model.
The hyperparameters used were Regularization Parameter (pa-
rameter that controls the penalty for misclassified training
examples, i.e., cost function) (C), the Kernel Coefficient (γ),
the kernel to be used, the highest degree possible (for a poly
kernel), and the value of the independent term (Coef0), which
controls the flexibility of the decision boundary for the poly
and sigmoid kernels [12]. The ranges of possible values can
be assessed in Table VII.
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TABLE VII: SVM model hyperparameters search space.

Hyperparameter Possible Values

C [0, 100]
γ {scale, auto, 0.1, 0.01, 0.001}
Kernel {linear, rbf, poly, sigmoid}
Degree {1, 2, 3}
Coef0 [−5, 5]

As in the case for LogReg, an ideal class weight was
estimated, however here only for ’Optimal’ class, as it was
the worst predicted class even at a training stage. The weight
being smaller is penalizing the class, making it more likely
to decide for one of the other classes when close to the
decision boundary. The resulting regularization parameter is
then defined by [12],

Cclass ← C × wclass

The weight for the ’Optimal’ class that retrieved the highest
accuracy was estimated as shown in Fig. 11 (wOptimal = 0.8).

Fig. 11: Effect of the ’Optimal’ class weight on SVM model
accuracy.

The remaining classes kept the initially attributed unitary
weight. The best parameters found, for this weights, were
C 6.93, γ auto (1/nfeatures), and kernel RBF (Radial Basis
Function).

RBF kernel: exp(−γ||x− x′||2)

In this case, the learning curves for both the training and
cross-validation sets (Fig. 12) converge, with no signs of
overfitting. However, it could be beneficial to expand the
training dataset further, as the cross-validation score continues
to improve. This suggests that the model might still benefit
from more data, which could enhance its ability to generalize
better.

Fig. 12: SVM model performance using learning curve repre-
sentation across varying training data sizes.

The confusion matrices for both training (Fig. 13) and
testing datasets (Fig. 14) show a good performance in the clas-
sification of all classes, especially for those in the extremities
(as verified in the previous model).

The classification reports of the training (Table VIII) and
testing datasets (Table IX) show consistent results among
them. However, it is noteworthy the low value of Recall for
the ’Optimal’ class in both cases, indicating several misclas-
sification occurrences (observations that should be ’Optimal’
but were classified as one of the other classes).

Fig. 13: Confusion matrix for the training data of SVM model

TABLE VIII: Classification report for SVM model perfor-
mance evaluation on training data.

Class Precision Recall F1-Score Support

Low/Minimal 0.84 0.89 0.86 170
Optimal 0.81 0.54 0.65 170
Risk/Caution 0.67 0.85 0.75 171

Accuracy 0.76 511
Macro avg 0.77 0.76 0.75 511
Weighted avg 0.77 0.76 0.75 511
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Fig. 14: Confusion matrix for the test data of SVM model

TABLE IX: Classification report for SVM model performance
evaluation on test data.

Class Precision Recall F1-Score Support

Low/Minimal 0.74 0.93 0.82 43
Optimal 0.76 0.44 0.56 43
Risk/Caution 0.73 0.86 0.79 42

Accuracy 0.74 128
Macro avg 0.75 0.74 0.72 128
Weighted avg 0.75 0.74 0.72 128

VIII. DECISION TREE

The decision tree model was developed considering the
hyperparameters available and setting ranges for the possible
values to be estimated [13]. The ranges were selected taking in
consideration the need to minimize the risk of overfitting. The
maximum depth illustrates how deep the tree goes, and can
be a sign of overfitting if it ’grows’ too long. The minimum
sample split constrains the tree in the number of splits allowed,
as it requires more samples at each child node. A similar
hyperparameter is minimum sample per leaf, meaning the
minimum number of samples at any end node (making them
more relevant). The split criterion evaluates the quality of a
split when building the decision tree. The hyperparameters and
ranges selected are presented in Table X.

TABLE X: Decision tree model hyperparameters search space.

Hyperparameter Possible Values

Split Criterion {gini, entropy}
Max Depth [2, 3, . . . , 8]
Min Samples to Split [5, 6, . . . , 20]
Min Samples per Leaf [3, 4, . . . , 10]

The maximum tree depth selected was 4, minimum samples
to split 11, minimum samples per leaf 7, and the split criterion
entropy (H), given by

H(node) = −
∑

Class j

p(Classj |node) log p(Classj |node)

The optimized DTree resulted in the structure as seen in
Fig. 15.

Fig. 15: Visualization of the decision tree model after opti-
mization using randomized search.

The decision paths are characterized by the certainty in each
node, highlighted by the color saturation for each of the classes
(’Low/Minimal’, ’Optimal’, ’Risk/Caution’). The diminished
proportion of end nodes with higher color saturation for ’Op-
timal’ when comparing with the other classes is noteworthy,
and consistent with the observations for the remaining models.

The learning curves were assessed from Fig. 16, which
shows a significant improvement up until a training set size
of 250, but there’s no significant gain with increasing set
sizes, with the learning curves even slightly diverging at 450
samples.

Fig. 16: Analysis of decision tree model performance using
learning curve representation across varying training data
sizes.

From the confusion matrices for training (Fig. 17) and
testing datasets (Fig. 18) it is visible that the model had
some difficulty between the ’Optimal’ and ’Risk/Caution’
classes, but with a satisfying prediction performance for
’Low/Minimal’.
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Fig. 17: Evaluation of decision tree model performance on
training data performance via confusion matrix.

TABLE XI: Classification report for decision tree model
performance evaluation on training data.

Class Precision Recall F1-Score Support

Low/Minimal 0.82 0.74 0.77 170
Optimal 0.52 0.62 0.57 170
Risk/Caution 0.69 0.63 0.65 171

Accuracy 0.66 511
Macro avg 0.68 0.66 0.67 511
Weighted avg 0.68 0.66 0.67 511

The classification reports for both training (Table XI) and
testing datasets (Table XII) are well aligned with the interpre-
tation of the confusion matrices. Furthermore, the performance
metrics are consistent between datasets, with no indication of
potential overfitting.

Fig. 18: Evaluation of decision tree model performance on test
data performance via confusion matrix.

TABLE XII: Classification report for decision tree model
performance evaluation on test data.

Class Precision Recall F1-Score Support

Low/Minimal 0.72 0.77 0.74 43
Optimal 0.47 0.47 0.47 43
Risk/Caution 0.64 0.60 0.62 43

Accuracy 0.61 128
Macro avg 0.61 0.61 0.61 128
Weighted avg 0.61 0.61 0.61 128

IX. DISCUSSION

A. Performance Metrics

In order to clearly visualize and compare the different
models, the results collected were represented using box plots,
as depicted in Fig. 19. The results were obtained from 8-fold
cross-validation for the whole dataset in each of the models.
In each iteration the models were trained on 7 folds and
tested on the eighth. The performance metrics were determined
for each iteration and used afterwards to evaluate the global
performance of each model. Each model used the optimized
hyperparameters described earlier.

(a)

(b)
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(c)

Fig. 19: Boxplots showing the distribution of (a) precision, (b)
recall and (c) F1-scores across 8-fold cross-validation for the
different classes and models.

The SVM model stands out with the best performance
metrics for all the classes, but the analysis does not end there.
The range of scores is not consistently good for any of the
models (for some metrics it is narrow with few outliers, most
of the times is rather wide). This is a result of the small size of
the dataset, where better performing models might be seeing
repeated observations from the training to the test dataset,
given that the minority class had to have its observations over
sampled by duplicating at random some of its observations.
For these cases there might be some positive bias, but further
analysis of the models would be necessary to confirm to what
extent it is happening. The median F1-score for SVM is 0.84
for ’Low/Minimal’ class, 0.77 for ’Risk/Caution’ with a wider
distribution of values, and 0.66 for ’Optimal’ with an even
wider range.

The two other models show particularly low values when
assessing the sensitivity score, indicating a challenging per-
formance to accurately classify any of the classes (i.e., with a
substantial amount of false negatives). The decision tree model
fares particularly bad in this aspect, with a spread of possible
recall scores from 0.5 to 0.80, and 50% of the values ranging
from 0.55 to 0.65 for the high stakes class ’Risk/Caution’.
However, for the ’Optimal’ class none of the models performs
adequately: 50% of the sensitivity scores for LogReg range
from 0.48 to 0.57, showing that for a good part of the trained
models would miss more than 50% of the true positives,
performing worse than guessing at random; SVM and DTree
are closer to each other, with the DTree performing slightly
better for this class.

For an overall comparison, albeit not ideal, accuracy scores
were computed in the previously described conditions. Both
LogReg and DTree perform worse than SVM by more than
10% for the models’ median accuracy, as in Fig. 20.

Fig. 20: Boxplots showing the distribution of accuracy scores
across 8-fold cross-validation for different models.

Nonetheless it is important to keep in mind that accu-
racy is not the best performance metric for our case for
several reasons: class importance, where the misclassification
of ’Risk/Caution’ class is not penalized (given that it is the
most important class to predict accurately); no insight on class
performance; random guessing cannot be assessed with no
class specific performance.

B. Decision Boundaries

In order to provide a visual representation of the decision
boundaries between the classes, principal component analysis
(PCA) was performed for each model on the test dataset. The
predicted and real classifications were plotted along the two
principal components, each explaining 42.3% and 26.3% of the
total variance. It is worth reminding that the decision bound-
aries are an approximation, given that once PCA was applied
and only the first two PC were used, roughly 31.4% of the
dataset’s variance was lost, meaning that these visualizations
are not an accurate representation of the model’s performance,
but rather a rough estimation.

From the Fig. 21 to 23 it is possible to observe the
approximation to what the actual decision boundaries are in the
space of the principal components. The decision regions are
distributed by colors, for LogReg going from ’Low/Minimal’
on the left, ’Optimal’ center, and ’Risk/Caution’ on the right.
For SVM and DTree the decision boundaries are more com-
plex, occupying more than one contiguous region.
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Fig. 21: Approximation of decision boundaries for logistic
regression on principal component axes, showing true and
predicted classes.

For the LogReg model, the ’Low/Minimal’ class shows high
precision with several of the true classes correctly placed in
the specific region (consistent with the previous analysis and
the box plot).

For the remaining classes it seems to be hit or miss for any
given point. There’s a clear challenge in distinguishing clearly
how several of the observations should be classified.

From the class mapping for the SVM model (Fig. 22)
the use of the RBF solver is evident with more complex
decision boundaries. These regions provide a more accurate
classification, although the region of ’Risk/Caution’ shows
several observations that should be ’Optimal’, evidencing how
difficult it is to create a proper decision boundary that would
not be an overfitting.

Fig. 22: Approximation of SVM decision boundaries on prin-
cipal component axes, showing true and predicted classes.

Fig. 23: Approximation of decision boundaries for decision
tree on principal component axes, showing true and predicted
classes.

Lastly the DTree model (Fig. 23) displays even more
complex decision boundaries, trying to account for the obser-
vations that populate the ’Risk/Caution’ region. This might be
a result of DTree’s nature, due to its discrete decisions. Unlike
the previous models that need to adjust a continuous surface
to separate classes, DTree splits the characteristic space in a
hierarchical and discrete fashion given the binary nature of the
tree’s nodes.

Even though DTree is a powerful ML model to capture
non-linear relations, its’ graphical interpretation in this context
shows the hardships faced to clearly separate observations
between classes.

The graphical representations of the models allow to better
perceive the complexity behind the problem and the challenges
the models face in obtaining an efficient separation between
classes. The overlap of classes, especially ’Optimal’, shows the
need to consider further adjustments to the models, different
features for the raw data, or even more robust models that can
better capture the relations inherent to the classes.

C. Literature Benchmark

In the literature the vast majority of work is dedicated to
predicting injury. This scenario is strikingly different from
the case in study, due to its binary nature (meaning reduced
complexity and the tendency to prefer metrics as the area
under the curve, AUC, rather than the ones used in this
project). Moreover, the studies found while writing the State
of the Art were related to contact sports (e.g., football,
soccer). Nonetheless, the methodology and feature selection
is somewhat comparable, despite a clear focus on relying
on measurable data (i.e., GPS tracking, smart watches for
sleep monitoring, among others). It is also noteworthy that the
datasets available in the studies cited are considerably larger,
consisting of several athletes (two to three times more than for
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this project’s dataset) and spanning over at least two to three
seasons.

In the work by Ruddy et al. focused on modeling hamstring
strain injuries in Australian footballers, where with 10-fold
cross-validation the AUC ranged between 0.26 and 0.91 for
the best performing model (Näive Bayes) [14]. In a different
work by Carey et al., the authors modelled the training loads
and injury likelihood in Australian footballers. The cross
validation was also 10-fold, where the best performing model
was regularized LogReg, achieving an AUC of 0.72. Vallance
et al. explored the combination of internal and external training
loads to predict non-contact injuries in soccer, where the
precision and recall for random forest and extreme gradient
boosting (XGB) models were close to 0.97 for one-month
prediction performance [6].

Despite the different metrics employed, it is safe to assume
the best performing model in this project is well within the
range of those in the literature. It is important to bear in
mind that the target feature for the studies cited (i.e., injury)
was measured and based of real observations. In contrast,
the fatigue index in the dataset of this project was estimated
based on empirical knowledge of the Head Coach. This fact
alone highlights the inherent limitations of the original dataset,
considering that the fatigue was not actually measured, which
is understandable given the complexity and multifaceted nature
defining and quantifying what a fatigued state is.

X. CONCLUSION

The objective of this project was to employ different ma-
chine learning models to predict the fatigue index in elite
swimming athletes, as determined from feedback from ath-
lete’s under various forms. The results of this study show that
with a reduced dataset, focusing on highly correlated features
to fatigue, and careful methodology design it was possible
to obtain a well performing model using a support vector
machine model.

Finally, the model will be implemented at the local club,
and further work is planned, to improve data collection and
feature selection.
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