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Abstract—This work explores financial sentiment analysis us-
ing the Financial PhraseBank dataset, a benchmark in the field
for its annotated financial news snippets. The performance of
three different models, fastText, LSTM, and BERT, is evaluated
and compared on a selected subset with 75% annotator agree-
ment. BERT-based models significantly outperform the others,
motivating further refinement through data augmentation and
a novel weighted training strategy that incorporates annotator
agreement levels during training. The proposed models achieve
performance in line with, or surpassing, literature baselines,
demonstrating the importance of both architecture selection and
annotation-informed weighting schemes in financial NLP.
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I. INTRODUCTION

With the ever-increasing volume of information created and
distributed by the minute, access to fast and reliable analysis of
available information is more important than ever. Especially
with the democratized access to financial instruments and
capital markets, where individuals have the possibility to
invest in virtually any company on the stock exchange, it is
important to have ways to leverage against giant institutions
with hundreds of financial analysts at their disposal.

Historically, financial analysis relied heavily on fundamental
analysis (examining earnings, balance sheets, annual financial
reports), which required extensive knowledge in the field (also
the strategy that made Warren Buffett one of the richest men in
the world), along with technical analysis (studying price and
volume trends). Around 2010, after the 2008 global financial
crisis, there was a surge in news analysis to evaluate the tone
and derive investment strategies from it [1]. Due to the lack of
domain specific lexicon these analysis were fallible, until the
work by Loughran and McDonald was published, a financial
lexicon based on 10-K forms (i.e., annual financial reports)
and dictionaries [2]. This allowed to use more sophisticated
analysis rather than using the presence of negative words as a
signal to sell.

Upon the launch of Twitter, information streams increased
dramatically, making more and more data available for anal-
ysis. But, machine learning was not heavily used, as most
data was not annotated, or there was very little data with
high-quality annotations. In 2014, P. Malo et al. published

Jodo Cardoso
Complements of Machine Learning 24/25
University of Aveiro
Aveiro, Portugal
joaopcardoso @ua.pt

a fundamental dataset for financial sentimental analysis, that
is still used, the Financial Phrasebank. It is unique, for the
inclusion of important aspects as directional expressions (e.g.,
profits decreased), entity polarity shifts (e.g. profits may be
negative if decreased), and phrase level context [3].

With this, machine learning models started finding their
place, as the field of natural language processing (NLP) grew
and niche fields such as financial investments found more
useful data. This work explores the Financial Phrasebank
dataset by implementing different machine learning and deep
learning models to evaluate the sentiment of sentences related
to financial news.

II. STATE OF THE ART

The field of NLP has grown drastically in the past decade,
progressing from recurrent neural networks (RNN) and related
models such as Long-Short Term Memory (LSTM), to the
transformers-type models, large language models (LLM) and
text generative models as ChatGPT. With the Financial Phrase-
bank the field expanded into financial analysis, with several
works of relevance being published in recent years.

In the work of Araci (2019), the author developed a BERT-
based model trained specifically on texts with financial data.
BERT, Bidireccional Encoder Representations from Trans-
formers, is a large language model developed by Google
(2018), benefitting largely from the fact that it can hold” in
memory large chunks and in both directions, simultaneously
[4]. The fact that it is built on the Transformer encoder
architecture, it can weigh the importance of different words
in a sentence by using a self-attention. The model is pre-
trained on large unlabelled corpora (e.g., Wikipedia, Book-
Corpus), and can be fine-tuned for specific purposes. In this
work, the end model was trained on domain specific corpus
such as TRC2-financial data and financial specific texts (over
440 000 sentences), and then fine tuned with the Financial
Phrasebank. The model achieved an accuracy of 97% and a
Fl-score of 95% on the Financial Phrasebank dataset with
100% agreement, but only 86% and 84%, respectively, on the
dataset with all levels of agreement (the agreement will be
further detailed in the Methodology section) [5].



Later on the model was further improved by Sun er al
(2025), EnhancedFinSentiBERT, by including dictionary em-
beddings, expanded corpus that diversified the pre-training
stage drastically, and a novel neutral sentiment module, that
further enhanced the distinction between neutral and weak
sentiments, with a Fl-score of 87%. The pre-training stage
benefited from the large diversity of the corpus, going from a
few million tokens to 2.4 B tokens with the latest version [6].

In a similar direction, but at the fine-tuning level, Atsiwo
(2024) improved the data used in fine-tuning, considering that
most datasets have relatively short sentences (< 100 tokens),
failing to leverage the full context window of LLMs like
BERT (512 tokens). This was achieved by augmenting the
training data with synthetic sentences generated by GPT-4,
with accuracy of 89% and Fl-score of 88% for the complete
dataset (lowest agreement level of 50%) [7].

GPT has been used with different purposes, as in the work
by Fatouros et al. (2023), where GPT-3.5Turbo was used for
zero-shot sentiment classification. These conditions are harder
on the model, as it never undergoes specific training for the
context, relying solely on its pre-training (hence the poorer
performance against finely tuned models). Under the same
conditions (not using the Financial PhraseBank, but scraped
headlines related with forex trading), it outperformed finely-
tuned models with an accuracy of 75% and F1-score of 74%
(finely tuned models in zero-shot conditions achieve accuracy
of 56% and F1-score of 55%) [8].

The BERT model was revisited by different researchers,
but a new iteration from Facebook AI was proposed (2019)
named RoBERTa (Robustly Optimized BERT Approach) was
developed, that used a significantly larger corpus for training
(10x larger), and a dynamic masking technique during training,
that allowed the model to learn new contextual relations while
using the same sentences, making it more robust [9]. This
model was used to develop financial models, where the work
Choe et al. (2023) is worth mentioning, where a large corpus
of financial texts were fed to the model for training, from
a range of sources (e.g., Reuters, SEC filings, EIA). The
model (FiLM, Financial Language Model) benefited from
the diversity of training data, rather than simply focusing
on fine tuning with highly curated data, showing improved
generalization and better metrics than FinBERT and RoBERTa
(accuracy 86%, F1-score 84%) [10].

These models are improving substantially over the years,
but it is different to put them to test against a controlled
dataset from using them in real life, and the variety included
as consequence. Competitions such as FinNLP help drive
research in this field, by posing ever more diversified test sets,
aiming to improve the robustness of models, and the solutions
developed by the researchers.

III. METHODOLOGY

To address the problem of sentiment classification in sen-
tences related to financial investment, a pipeline was set up
for training and testing using the Financial PhraseBank for
three types of models, where the best was further explored and

tuned for different tests. The dataset and setup are detailed in
the following subsections.

A. Dataset

The Financial PhraseBank is a widely used benchmark
dataset for financial sentiment analysis. It consists of roughly
4,840 English sentences (mostly news headlines or short state-
ments) about companies, drawn from financial news articles
and press releases. Each sentence is labelled with one of three
sentiment classes: positive, negative, or neutral, representing
the sentence’s sentiment from the perspective of an investor

(3], [11].

Table I: Financial PhraseBank distribution. Four possible sets
within the dataset, depending on how many financial experts
agreed with the attributed label (majority agreement statistics).
The dataset with 50% agreement corresponds to the entire
dataset.

Sentiment Agreement

50% 66% 75% All
Negative 604 514 420 303
Neutral 2879 2535 2146 1391
Positive 1363 1168 887 570
Total 4846 4217 3453 2264

The dataset was labelled by 16 finance professionals, each
responsible for labelling a subset of sentences. Each sentence
was labelled by 5-8 annotators, and the resulting agreement
score was a result of the fraction of annotators that labelled the
sentence in the same manner. This resulted in 4 different sub-
sets, where 50% agreement corresponds to the entire dataset,
with the dataset size decreasing as the level of agreement
increases. It is important to mention that the agreement level
corresponds to the least allowed, so the 50% agreement level
dataset contains the other subsets. The dataset sizes and class
proportion can be consulted in Table I, along with sample
sentences and their corresponding sentiment classification in
Table II.

This subset strategy allows researchers to find a balance
between the amount and the quality of data, representing a
common trade-off in the field of machine learning.



Table II: Raw example sentences from the Financial Phrase-
Bank, each annotated with sentiment labels and associated
annotator agreement levels.

Sentence Sentiment Agreement
level
According to Gran, the company Neutral 100%

has no plans to move all production

to Russia, although that is where

the company is growing.

The fair value of the company ’s  Negative 75%
investment properties went down

to EUR 2.768 billion at the end

of 2009 from EUR 2.916 billion a

year earlier.

Basic banking activities continued  Neutral 66%
as normal .
In banking , Sampo A was un-  Positive 50%

changed at 14.24 eur and Nordea
rose 0.42 pct to 9.51 eur.

B. Exploratory Data Analysis

Taking into consideration the different possible subsets,
the one with 75% agreement was selected, as it offers a
balance between quantity and quality in the dataset, while also
maintaining class proportion.

In Fig. 1 the number of sentences per class is evidence of
how imbalanced the dataset is. As a result, the dataset was
balanced by undersampling all classes to match the number
of examples in the Negative class, resulting in 336 sentences
per class.

Sentiment Distribution

Number of Documents

negative neutral positive

Sentiment

Figure 1: Class distribution in the 75% agreement dataset.

The frequency distribution of document lengths helped
determine the maximum number of tokens to use (considering
the limit is 512 for BERT), as shown in Fig. 2.

Distribution of Word Counts per Document

400 A

300 4

Frequency

200 4

100

40 50 60 70 80
Number of Words

Figure 2: Word count distribution per document for the 75%
agreement dataset.
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Figure 3: Most frequent words in the dataset, visualized as a
word cloud.

Figure 3 displays the most frequent words in the dataset
subset with 75% annotator agreement, highlighting key terms
that dominate the financial news domain. To identify words
most indicative of sentiment class, word frequencies were then
compared across sentiment categories. Terms such as down,
decreased, profit, fell, and rose appeared with significantly
higher frequency in specific classes, making them particularly
relevant for classification.

C. Preprocessing

The selected dataset (75% agreement) was split 80/20 for
training/testing. The testing dataset was unique, meaning that
all the sentences present in this subset were removed from any
other dataset (of all the possible agreement levels), to prevent
data leakage.

The preprocessing changed slightly between models and
is detailed in the corresponding sections. The preprocessing
described here was performed prior to any model training, as
was the class balance mentioned earlier.

D. Model Evaluation and Validation Strategy

Prior to model training, 5-fold cross-validation was per-
formed for hyperparameter tuning, followed by training on
the full dataset. Models were continuously evaluated using



learning curves and comparative metrics such as the confusion
matrix, Fl-score, and accuracy.

IV. MODEL ARCHITECTURES: LSTM, FASTTEXT, AND
BERT

With the primary goal of sentence-level sentiment classi-
fication, three models were initially evaluated, followed by
more advanced iterations on the best-performing one. The
final model was further developed with data augmentation,
and weighted classes, that will be further detailed below. The
models selected were: Long Short-Term Memory (LSTM),
fastText, and Bidirectional Encoder Representations from
Transformers (BERT).

1) Long Short-Term Memory: LSTM is a type of recur-
rent neural network (RNN), introduced by Hochreiter and
Schmidhuber (1997). Its architecture was designed to solve
the vanishing gradient problem common in standard RNNs
by introducing memory cells and gating mechanisms (input,
output, and forget gates) to retain long term dependencies in
sequential data, such as time series or sentences. In the present
work, a standard LSTM architecture was used, without pre-
training [12].

2) fastText: Developed by Joulin et al. at Facebook Al
(2016), fastText is built on the Word2Vec (word representation
in a vectorial space) and extended it by incorporating sub-
word information. Rather than representing each word as a
single entity, it breaks it down to character n-grams. This
allows to represent sentences by averaging word embeddings,
making it very lightweight and fast to train on large datasets,
with minimal tuning. The lightweight-ness and little tunability
makes it less differentiated and harder to adapt to specific
cases. In the present study, the standard supervised fastText
implementation was used for sentence classification, without
pre-trained embeddings [13].

3) Bidirectional Encoder Representations from Transform-
ers: BERT was introduced by Devlin et al. and colleagues at
Google (2018), and is a deep-transformer model pre-trained
on large corpora using masked language modeling (hiding
one word in the sentence for the model to predict) and
next sentence prediction. BERT is capable of considering
both forwards and backwards dependencies with a word,
simultaneously. This allows for much better understanding of
nuanced language patterns and semantics. Despite the higher
computational requirements, it still is manageable at a local
level, and benefits heavily from fine-tuning for specific NLP
tasks. In this work, the bert-base—-uncased variant was
used as the base model [4].

A. Initial Benchmark

The initial models went through rounds of 5-fold cross
validation, with the hyperparameter search spaces as indicated
in Table III.

Table III: Hyperparameter search space and selected values for
the initial models.

Hyperparameter Search Space Selected Value

{20,21,...,99} 88
[1075,1072] 4x1073
{100, 200, 300} 200

(a) fastText hyperparameters.

Epochs
Learning rate
Embedding dimension

Search Space Selected Value

{2,3,5,8,10,15} 3
[1075,1073] 104
{32,64,128,256} 128

Hyperparameter

Epochs
Learning rate
Embedding dimension

LSTM units {32,64,128,256} 32
Dropout [0,0.5] 0.2
Recurrent dropout [0,0.5] 0

(b) LSTM hyperparameters.

Hyperparameter Search Space Selected Value
Epochs {1,2,3,4,5} 2

Learning rate [1075,102] 104

Weight decay [0,0.5] 0.1

(c) BERT hyperparameters.

After selecting the best hyperparameters, the models were
retrained on the full training set. Results are summarized in
Table IV.

Table IV: Initial benchmark metric results across the models
for both the training and test sets.

Model Accuracy F1 (macro)
Train Test Train Test
fastText 0.54 0.65 0.45 0.44
LSTM 0.67 0.66 0.63 0.63
BERT 0.97 0.92 0.97 0.91

Results show a clear performance gap between the models,
with BERT performing best, followed by LSTM and fastText.
These findings align with the literature, although LSTM can
achieve better performance when using bi-LSTM. However,
the purpose here was to evaluate vanilla models as an initial
assessment.

Given BERT’s superior performance, it was selected for
more detailed analysis and further experimentation, with its
evaluation metrics and class-wise error distribution examined
below. From this point onward, this model is referred to as
B-BERT.

From the learning curve (Fig. 4) the model seems to learn
well, albeit the validation loss does increase slightly towards
the end, overlapping the training curve.
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Figure 4: B-BERT learning curve.

From the confusion matrix and training metrics (Fig. 5
and Table V), the model seems to learn well, with no class
suffering in particular in terms of performance.
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Figure 5: Normalized confusion matrix for the training set with
the B-BERT model.

Table V: Classification report for B-BERT on training data.

Class Precision  Recall F1-Score Support
Negative 0.98 0.98 0.98 336
Neutral 0.98 0.97 0.98 336
Positive 0.96 0.97 0.96 336
Accuracy 0.97 1008
Macro avg 0.97 0.97 0.97 1008
Weighted avg 0.97 0.97 0.97 1008

From the test results (Fig. 6 and Table VI), the model
appears to be overfit, showing difficulties in generalizing and
achieving performance comparable to the training set, with the
macro average being significantly lower.
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Figure 6: Normalized confusion matrix for the test set with
the B-BERT model.

Table VI: Classification report for B-BERT on test data.

Class Precision  Recall F1-Score Support
Negative 0.86 0.93 0.89 84
Neutral 0.98 0.92 0.95 429
Positive 0.84 0.92 0.88 178
Accuracy 0.92 691
Macro avg 0.89 0.92 0.91 691
Weighted avg 0.93 0.92 0.92 691

B. Data Augmented Model — DA-BERT

To improve the model’s generalization capability, an online
data augmentation strategy was implemented, consisting of
back-translation (translation-based augmentation using inter-
mediate pivoting paraphrasing, English to German and back),
lexical substitution (where random words are replaced with
WordNet-based synonyms), and template-based augmentation
(by using named entity recognition, the identified words are
replaced with template tokens such as ORG or DATE to
generalize the sentence). Some examples of this augmentation
are available in Table VII.

Table VII: Example sentences from the Financial PhraseBank

The cross-validation procedure mentioned previously was
executed, with the search space and selected values indicated

and their augmented examples.

Original

Augmented

In the building and home
improvement trade, sales de-
creased by 22.5% to EUR
201.4 mn.

In January—June 2010, diluted
loss per share stood at EUR
0.3 versus EUR 0.1 in the first
half of 2009.

In the building and DIY trade,
sales decreased by 22.5% to
EUR 201.4 million.

In the first half of 2009, di-
luted loss per share stood at
EUR 0.3 versus EUR 0.1 in the
same period of 2008.




in Table VIII.

Table VIII: Hyperparameter search space for DA-BERT and
selected values after fine-tuning.

Hyperparameter Search Space  Selected Value
Epochs {1,2,3,4,5} 2

Learning rate [10-5,1072] 1074

Weight decay [0,0.5] 0.1

With this setup, the model was trained on the full training
set, using the same online data augmentation pipeline. As
shown in the learning curve (Fig. 7), the model was able to
generalize well throughout the training routine, with validation
performance slightly increasing between the 50" and 80"
steps, then following a downward trend toward the end.
Although the curve does not exhibit a stable or horizontal
convergence, this behavior is due to an implicit early stopping
effect governed by the number of epochs, which was treated
as a hyperparameter during fine-tuning.

Learning Curve for Data Augmented BERT Model
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Figure 7: DA-BERT learning curve.

The confusion matrix from the training (Fig. 8) shows that
the model performed well, but slightly worse in particular
for the Positive class, which can also be confirmed from the
classification report (Table IX), where the recall is consider-
ably lower. The overall metrics (accuracy, macro average, and
weighted average) indicate worse performance compared to
the B-BERT model, though the comparison is not entirely fair
given that B-BERT showed signs of overfitting.
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Figure 8: Normalized confusion matrix for DA-BERT model
on training data.

Table IX: Classification report for DA-BERT on training data.

Class Precision Recall F1-Score Support
Negative 0.92 0.97 0.95 336
Neutral 0.90 0.96 0.93 336
Positive 0.94 0.83 0.88 336
Accuracy 0.92 1008
Macro avg 0.92 0.92 0.92 1008
Weighted avg 0.92 0.92 0.92 1008

From the test confusion matrix (Fig. 9) there is a slight
decrease for the Negative and Neutral classes, whereas the
Positive class keeps as is. The trend is confirmed from the
classification report (Table X), showing slightly worse metrics
than for the training data.



Confusion Matrix (Test)

0.8

negative

0.6

True

neutral

-0.4

-0.2

positive

1 l
negative neutral

Predicted

positive

Figure 9: Normalized confusion matrix for DA-BERT model
on test data.

Table X: Classification report for DA-BERT on test data.

Class Precision Recall F1-Score Support
Negative 0.81 0.95 0.87 84
Neutral 0.95 0.91 0.93 429
Positive 0.80 0.83 0.81 178
Accuracy 0.89 691
Macro avg 0.85 0.89 0.87 691
Weighted avg 0.90 0.89 0.89 691

The model appears well-fitted, despite slight differences
between training and test metrics. These can be explained
given the data augmentation pipeline, that pushes the model
towards generalization, while losing more obvious patterns that
are kept in the undisturbed test set.

C. Instance Weighted Model — W-BERT

For this model the approach aims to achieve a balance
between quantity and quality of data. Rather than filtering
documents based on the level of agreement, the goal was to
introduce the level of agreement as penalty weights during
training, with the model being more penalized for wrong
classification of sentences with higher level of agreement and
less so for the opposite cases.

After testing, the following formula was adopted for the
agreement class weights, with i € {50%, 66%, 75%,100%},
where each value represents a level of annotator agreement
associated with each sentence in the dataset.

N e®i
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where a; is the raw agreement scores for class 4, n; the number
of samples in class ¢, and N the total number of instances.

w; = scale - p; =

The rationale behind this formulation starts from a set
of empirically defined raw agreement scores, a;, for each
agreement class:

{0.50,0.66,0.75,1.0}

These values represent the degree of annotator consensus
and are transformed exponentially using the softmax function,

ev
M e

to capture differences in confidence in a non-linear manner.

Following this transformation, a normalization factor is
applied to account for agreement imbalance in the training
dataset,

N
Zi N - Pq

scale =

ensuring that the average weight across all training instances
equals 1, preserving the comparability of the loss function with
a weightless scenario, such as the test dataset.

This approach leverages confidence information from agree-
ment levels without distorting the overall loss scale during
training.

Considering the dataset for this model, and accounting for
class balance, the training dataset for this model had 520
observations per class, rather than the 336 from earlier. The
hyperparameter search space and selected can be found in table
XI.

Table XI: Hyperparameter search space for W-BERT and
selected values after fine-tuning.

Hyperparameter Search Space Selected Value
Epochs {1,2,3,4,5} 3

Learning rate [10—%,1072%] 1074

Weight decay [0,0.5] 0.1

The learning curve for the instance-weighted training loss
and the weightless validation loss (Fig. 10) shows that both
training and validation losses decrease during the first half of
training. Around the midpoint, the validation loss begins to
increase slightly, while the training loss continues to decrease,
indicating early signs of possible overfitting.
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Figure 10: W-BERT learning curve.

For training metrics, only a portion of the training set
was used, namely instances with at least 75% agreement.
This choice was motivated by the difficulty of incorporating
instance weights into the calculation of certain metrics and
the potential bias introduced if weighting is ignored. The 75%
agreement threshold was a natural selection, consistent with
the threshold used throughout the study and for the test set.

The approach under analysis produced notable results. The
confusion matrix for the partial training set (Fig. 11) and the
classification report (Table XII) provide strong evidence that
the model successfully learned to recognize the Negative class.
The improvement observed in the Positive class supports the
hypothesis that this category tends to exhibit lower annotator
agreement, making it more difficult for models trained without
weighting to capture.
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Figure 11: Normalized confusion matrix for W-BERT model
on the partial training set.

Table XII: Classification report for W-BERT on the partial
training set.

Class Precision  Recall F1-Score Support
Negative 0.83 1.00 0.91 336
Neutral 0.99 0.93 0.96 1717
Positive 0.90 0.85 0.93 709
Accuracy 0.94 2762
Macro avg 0.91 0.96 0.93 2762
Weighted avg 0.95 0.94 0.94 2762

The confusion matrix on the test set (Fig. 12) and the
classification report (Table XIII) show a slight decrease in
performance metrics, but overall well fit to the data. From the
confusion matrix there doesn’t seem a considerable change in
identifying the classes, nor a straightforward interpretation of
any two classes.
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Figure 12: Normalized confusion matrix for W-BERT model
on test data.

Table XIII: Classification report for W-BERT on test data.

Class Precision Recall F1-Score Support
Negative 0.78 0.94 0.85 84
Neutral 0.97 0.93 0.95 429
Positive 0.88 0.89 0.89 178
Accuracy 0.92 691
Macro avg 0.88 0.92 0.90 691
Weighted avg 0.93 0.92 0.92 691

These results may be further improved by implementing
more precise methods for determining the raw agreement
weight between annotators, whether through expert-driven
refinement or fine-tuning. Additional gains could also be
obtained by revisiting the weighting strategy applied during
the training procedure.



V. DISCUSSION

The metrics of the three BERT model variants are displayed
in Fig. 13. At first glance, the B-BERT model slightly out-
performs the other two, but only by narrow margins. Given
that the test set likely shares significant similarities with the
training set, and based on its detailed performance analysis,
it is reasonable to conclude that the base model is overfitted
and primarily suited to this specific setup. More importantly,
the models designed for better generalization, DA-BERT and
W-BERT, still perform well in this constrained scenario, with
performance metrics closely matching those of the base model.

Performance Comparison of Models
Precision

Recall Accuracy

—— DBase BERT
Data Augmented BERT
—— Weighted BERT

Fl-score

Figure 13: Radar chart of the macro performance metrics of
the BERT models.

The models performed well in comparison with the lit-
erature, as shown in Table XIV. While the results vary
depending on the agreement level of the test set, the trained
models consistently fall within the benchmark range reported
in previous studies.

Table XIV: Performance comparison on the test set between
the trained models and literature baselines.

Model Accuracy F1 (macro) Agreement Level
B-BERT 0.92 0.91 75%
DA-BERT 0.89 0.87 75%
W-BERT 0.92 0.90 75%
Sun et al. (2025) - 0.98 100%
Sun et al. (2025) - 0.87 50%
Atsiwo (2024) 0.89 0.88 50%
Choe (2023) 0.86 0.84 not reported
Araci (2019) 0.87 0.95 100%
Araci (2019) 0.86 0.84 50%
Malo (2014) 0.85 0.78 75%

VI. CONCLUSION

This work explored different machine learning and deep
learning models to perform sentiment classification in financial

statements. The approach was defined to assess different mod-
els, in order to further explore the best, considering literature’s
best practices. Among the tested models, BERT performed
much better than fastText and LSTM, and was further de-
veloped by employing a data augmentation pipeline, and,
separately, a weighted approach based on the agreement level.
Both cases performed close to the initial model, but, due to
improved generalization, showed slightly poorer performance
metrics.

For future work, both strategies could be implemented si-
multaneously, with models tested on different datasets to min-
imize the impact of performance metrics being influenced by
potential overfitting to the dataset. Additionally, the weighted
approach requires further investigation, ideally through expert-
informed methods, to reach a stage where the model can infer
the level of confidence in its predictions based on sentence
structure, wording, and other linguistic patterns.
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